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Abstract 

In a recent Erratum [M. Daniel and R. Amuda, Phys. Lett. A 224 (1997) 3891 the authors have explained that an algebraic 
error in their earlier analysis [Phys. Lett. A 191 (1994) 461 of a nonlinear evolution equation for a certain anisotropic 
antiferromagnetic chain in a magnetic field invalidates the twist solution obtained by them for any finite anisotropy. Using a 
transformed variable and a different analysis of that evolution equation in the presence of a field, we obtain a n/2-traveling 
twist solution for a finite anisotropy and a r-twist for negligible anisotropies. 0 1997 Elsevier Science B.V. 

Nonlinear dynamics of magnetic chains with vari- 

ous symmetries is a topic that has attracted a lot of 

attention in recent years [l]. The classical isotropic 
ferromagnetic (FM) chain described by the Hamilto- 
nian H= -J C, Sn.S,,+,, J>O, (S,>*=S'= 
const, is well known to be a completely integrable 
system in the continuum limit and supports nonlinear 

excitations which are pulse-type, non-topological 
soliton configurations [2]. In contrast, the study of 
the nonlinear dynamics of the isotropic antiferromag- 
netic (AFM) chain, J < 0, is more complicated, es- 

sentially because the nearest neighbour spin vectors 
tend to be antiparallel for low energies. Thus the 
evolution equations of spin vectors at the odd and 
even sites, i.e. the two sublattices, must be analysed 
individually. In view of this, the continuum equa- 
tions for the AFM chain can be derived in many 
ways. 

The sublattice vector formulation of Baryakhtar 

and Ivanov [3] derives the continuum coupled equa- 
tions of motion for the staggered magnetization q( X, 
t> = (S, - S,)/2S and the total magnetization 4(x, 
t> = (S, + S,)/2S (where S, and S, represent spin 
vectors at even and odd sites), starting from the 
continuum version of the AFM Hamiltonian ex- 
pressed in terms of these dynamical variables. On 
neglecting certain terms in the Hamiltonian, one can 

obtain [ 11 a Lorentz-invariant nonlinear sigma model 
with the well known antiferromagnetic magnons as 

the low-energy excitations for the isotropic case. 
More recently, in an alternative sublattice vector 
formulation [4] one starts with the discrete equations 
of motion for the spin vectors at the odd and even 
sites and derives the continuum equation of motion 
for t) and C; from them. It should also be noted that 
although the total z component of S is conserved for 
the discrete Hamiltonian (as in the FM case), that on 
a sublattice is not. This suggests that a domain-wall 
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like topological configuration in which the two sub- 
lattice spin vectors exchange roles can arise as a 
nonlinear excitation, and this was found in Ref. [I] 
for the isotropic case in the absence of a magnetic 

field. 
Applying the latter formulation [4] to an 

anisotropic chain with an easy-axis anisotropy 

AC,Sf2, the following continuum equation of motion 
for r) was derived some time ago by Daniel and 

Amuda [5] in the limit of vanishing 6: 

(1) 

Here 71 is a unit vector. The quantities i and l? 

represent respectively, the strength of the anisotropy 
and the magnetic field (in the z-direction) in units of 
J. For ready reference, note that Eq. (1) is Eq. (3.3a) 

of Ref. [5], rewritten in our notation. Here, we wish 
to point out that this equation is actually valid only 
for a staggered anisotropy AC,( - 1)‘s;’ rather than 

an easy-axis one. It can be easily verified by an 
inspection of Eq. (2.3) in Ref. [5] that an easy-axis 
would lead to the same sign in front of A in Eqs. 

(2.4a) and (2.4b), whereas the authors obtain oppo- 
sire signs. Thus the only case which would lead to 
opposite signs (which is necessary to obtain Eq. (I)) 
without tampering with the basic spin evolution 
equations is that of a staggered anisotropy. They then 
proceeded to solve Eq. (1) using complex analysis 
and obtained a twist-like solution (their Eq. (3.11)). 
However they have recently explained in their Erra- 
tum [6] that their analysis was inconsistent due to an 
algebraic error which invalidates that solution for 
any finite anisotropy. In what follows, we analyse 
Eq. (1) using a different approach and obtain a 
n/2-twist solution for this case. We also show that 
in the limit of vanishing /i, a n-twist is obtained, 

even in the presence of a field. ’ 
Since q is a unit vector, it can be represented in 

terms of spherical polar coordinates by 

v = (sin t? cosqp, sin8 sin cp,cos@). (2) 

’ A r-twist in the absence of a field for the isotropic case was 

found in Ref. [4]. 

Using Eq. (2) in Eq. (I) yields 

OX/sine= -(~,+(XCOS~--k), (3a) 

e/sin 0 = + qr, (3b) 
We define a new variable $ through the relation 

cos 0 = tanh 4 

and set 
(4a) 

@= cp+B’t. 

Eqs. (3) yield 

+,= +?-_tanh$, 

*,= -@,. 

(4b) 

(5a) 

(5b) 

Thus we see that in these equations, the external 
magnetic field is gauged out and merely gives rise to 
a linear increase of the angle 9 with time. Looking 

for traveling wave solutions of the form +( 6) and 
@( 5) where [= (x - ut) with u = const, we get 

++ = - L!I& - A tanhrl,, 

v*c = (ps. 

(6a) 

(6b) 

Eq. (6b) is readily integrated to yield 

+=UtcI+&. (7) 

where (pO is a constant. Thus Eq. (6a) can also be 

integrated and gives 

+!J= ln(C,e-l/‘+ (C,2e-2c/‘+ l)“‘}, (8) 

where 1= (1 + LJ”)/~# 0 and C, is a constant to be 

fixed by the initial condition. From Eqs. (4b), (7) 

and (8) 

cp=&-jt+fln 
( 

C,e-~/‘+(C,Ze-2~“+ l)“‘}. 

(9) 

The solution for q is found from Eqs. (2) and (4a): 

q( X, t) = sech${cosrpx -t sincpy} + tanh$z 

(‘0) 

with Ic, and cp as in Eqs. (8) and (9). Eq. (8) shows 
that 4-0 when 5+x and 4-+x when %-+ --. 
Using this in Eq. (10) yields the result that 17 is a 
n/2-twist, for all g, i.e. a configuration with the 
staggered magnetization 9 + z as x + - * and r) 
+ (sin cp x + cos rp y) as x -+ +x. Note also that 
both 4(x, t) and @(a t) are functions of (X - ot) 
with the same traveling wave velocity u, i.e. V+ = V+ 
= u. The quantity I= (1 + u’)/A sets the scale of 
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the solution. As the anisotropy A vanishes, this scale 
diverges, implying that (1, = const along the chain. In 
this limit, however, the equation of motion for r~ 

reduces to 

at, 
at- - -qx (-qr+&). 

which leads to (see Eqs. (5)) 

Jj, = 9, ’ Jr,= -+,. 

These support the (simplest) solutions 

*= (ELr- wt), 

+= (w.r+kt), 

(11) 

(12) 

(13) 

where X and w are arbitrary constants. From Eq. 
(4b) cp = (p - ir = wx + (k - B)t. Using these in Eq. 

(10). we get 

+sin[ox+(k-fi)t]y)+tanh(kx-wf)z. 

(14) 

This is a n-twist, i.e. 71 -+ fz as x 3 fx. From 

Eq. (13) we see that the twist itself travels along the 
chain with a velocity V,= o/k, whereas within the 
width of this traveling twist, the velocity V, of the 

periodic wave for the projection of q in the x-y 
plane is V, = (b-k)/w. A pure traveling wave solu- 
tion for r) requires Q = V,, which is satisfied when 
w’ = k( 6-k). Since w and k are real, this in turn 
can be satisfied only when the effective magnetic 
field 8 and the wave-vector k are such that (6-k) 
and k have the same sign, otherwise V*# V,. In the 
zero-field case B” = 0, it is evident that the two 
waves must have different velocities. 

It is interesting to note that for the case A= 0, 
when a r-twist is obtained for Eq. (I), I,!J and Q are 
linear in x and t (Eq. (13)). In contrast, for i# 0, 
when a v/2-twist is obtained, J, and cp are nonlin- 

ear functions of (X - ut) (see Eqs. (8) and (9)). The 
width of this twist depends on A/J, but when 
A = 0, there is an abrupt transition from a ?r/2-twist 
to a r-twist solution, suggestive of a bifucation-like 
behaviour as A is switched on or off. 

Having obtained the traveling twists using the 
moving coordinate approach, let us investigate what 
happens when complex analysis is carried out using 

the approach suggested in Ref. [5]. As mentioned in 

Ref. [6], that approach fails for any finite anisotropy. 
For the case of negligible anisotropy, 

@,/sin B = (i 40, - C), (15a) 

@,./sin0= -(i’p;. - C’) (15b) 

where z = f + i .r and C’ = i B/2. (Note that Eqs. 

(15) are Eq. (3.7a) and Eq. (3.7b) of Ref. [6].) 

Integrating Eqs. (15) yields [51 

tan( 0/2)exp( - i cp + Cz) = i2( z * ) (16) 

and its complex conjugate. Here. f1( z * ) is an arbi- 

trary function of : -. 
Following the steps in Ref. [5], one obtains the 

condition that (i cp + C * : * > =f’ where f is a real 

function. On substituting for C ” and z * and equat- 

ing real and imaginary parts of this equation. we get 

cp = G/2. f = fs.r/2. 

The choice 0 = 1 [5] in Eq. (16) will then yield 

cos0 = tanhf. (18) 

Using Eqs. (17) and (18) in Eq. (2) we obtain the 
following solution for the staggered magnetization: 

q( x,t) = sechf{coscpr + sinrpy} 

+ tanhf z. (‘9) 

This is differenr from the solution (Eq. (3.1 1)) writ- 
ten down in Ref. [5] and referred to as valid in Ref. 

[6] since ‘p # f in Eq. (19). Further, the expressions 
for f and cp given in Eq. (17) show that the solution 
obtained with this type of complex analysis is a 
non-traveling twist with the spin vectors processing 

with a constant frequency l?/2 at all sites along the 
chain. and is distinct from the traveling twist Eq. 

(14). 

R. Balakrishnan thanks the Center for Nonlinear 
Studies and the Theory Division (T- Ill of the Los 

Alamos National Laboratory for hospitality. R. Blu- 
menfeld’s work was supported by LANL’s Director’s 
Fellowship. 

References 

[I] H.J. Mikeska, M. Steiner, Adv. Phys. 40 (1991) 191. and 

references therein. 



72 R. Balakrishnan, R. Blumtwfeld/Ph.vsics Letters A 237 (1997) 69-72 

(21 M. Lakshmanan, Phys. Lett. A 61 (1977) 53; L.A. Takhtajan, 

Phys. Lett. A 64 (1977) 235. 

(31 I.V. Baryakhtar, B.A. Ivanov, Fiz. Nizk. Temp. 5 (1979) 759; 

Sov. Phys. JETP 58 (1983) 190; Solid State Commun. 34 

(1983) 545. 

[41 R. Balakrishnan, A.R. Bishop, R. Dandoloff, Phys. Rev. Lett 
64 (1990) 2107; Phys. Rev. B 47 (1993) 3108. 

[5] M. Daniel, R. Amuda, Phys. Lett. A 191 (1994) 46. 

[6] M. Daniel, R. Amuda, Phys. L.&t. A 224 (1997) 389. 


