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EUROPHYSICS LETTERS 

Europhys. Lett., 16 (11, pp. 47-52 (1991) 
1 September 1991 

Sidebranch Selection in Fractal Growth. 

R. C. BALL, P. W. BARKER and R. BLUMENFELD 
Theory of Condensed Matter, Cavendish Laboratory 
Madingley Road, Cambridge CB3 OHE, UK 

(received 20 March 1991; accepted in final form 17 June 1991) 

PACS. 61.50C - Physics of crystal growth. 

Abstract. - We present a self-consistent theory for the self-similar dendritic structure of noise- 
reduced diffusion-limited aggregates. We address the sparsening of sidebranches and the 
mechanism for their ultimate selection in the asymptotic structure. Key predictions are the 
sidebranch spacing and envelope angle of the dendrite depend crucially on the underlying order 
of anisotropy. 

There are a rich variety of fractal structures produced by irreversible diffusive controlled 
growth processes [l]. For a fractal structure to be grown by the advance of its perimeter 
there are two fundamental requirements. To generate ramification of the structure the 
growth must exhibit frequent tip splitting and/or sidebranching at the smallest scale. To 
enforce self-similarity there must be competition between branches on all larger scales, so 
that only of order one branch grows to scale R in each occupied region of that size. 

In this letter we present what we believe to be the first case of an explicit and 
quantitative theory of how this occurs and of the self-similar structure which results. We 
focus on noise-reduced diffusion-limited aggregation (DLA) [2-4] with anisotropy, where 
simulations, see fig. 1, indicate a striking angular morphology and a well-defined hierarchy 
of scales of sidebranching. The orderliness of this case enabled Eckmann et al. [5] to develop 
an explicit theory of the envelope shape of the major arms, but the underlying fractal 
structure was not addressed in their work. 

Diffusion-controlled growth produces structures where interior fjords are highly 
screened from the exterior diffusion field. This indicates that the properties and evolution of 
the growth are mostly governed by the outer envelope of the growth. A successful model for 
determining the growth singularities of the tips, a, is to approximate the outer envelope of 
the tip as a wedge[6,7]. We use this picture to model the growing dendrite and its 
sidebranches. The tips of the sidebranches are taken as wedges, enclosed by an imaginary 
wedge-shaped envelope of head angle, OG (see fig. 2). The sides of adjacent sidebranch 
wedges are continued until they meet, to form the simplest realisation of the fjord 
structure [8]. The growth direction of the sidebranches is fixed by the <<angle of attack, #, 
relative to the main finger. We exploit the orderliness of the growths to model them with an 
exact self-similar structure. The tips of the upper sidebranches are placed at x = x + i y =  
= A" exp [iO,] and the lower ones at x = A" exp [- ioG], where A (< 1) is the geometrical 
spacing of the sidebranches. 
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Fig. 1. - High noise-reduced anisotropic DLA clusters of ref. [5]. Each particle has n = 3 , 4 , 5  
%antennas* with equal angles between them. In all cases an asymptotic self-similar structure is 
approached, with fractal dimension D between 1.5 and 1.6. (Insets: constructions of the predicted 
asymptotic sidebranch structure from the theoretical results of table I. The effective wedge angle Bee 
is also shown (dashed line).) 

We impose the condition that the major sidebranch structure, selected by the competition 
for growth, is marginally stable [9]. Values can then be calculated for the geometrical 
spacing of the sidebranches, the envelope angle of their tips, the strength of the leading 
growth rate singularities (and hence the fractal dimension). 

Consider a small corrugation on the selected sidebranches, in which they are alterna- 
tively slightly ahead or behind their mean growth rate. If a branch of length 1 increases by 
A1 it is less screened from the diffusion field and its growth velocity v will also increase. The 
opposite occurs for branches that are reduced in length. A linear stability analysis shows 
that marginal stability corresponds to 

All1 = Avlv , (1) 

where AV is the change in growth velocity. We proceed by considering an alternating 
corrugation on the sidebranches and use condition (1) to select A in terms of $ and OG. Only an 
alternating mode is considered since, by the Mullins-Sekerka instability analysis [lo], the 
shortest wavelength corrugation is the most unstable, and will be the one seen. Consider the 
conformal map z' = z + g(z), where 

g(z) = z exp [- ioG] exp [i$l z+ + z exp [io,] exp [- i+l xi', (2) 

where v = z/llnAI. 
The perturbation g(z) is constructed such that the lengths of the sidebranches are 

alternatively increased and reduced along their direction of growth. For a sidebranch tip at 
x = An exp LieGI, fig. 2, we obtain g(z) = (- A)" exp [v&I exp [i$3 + (-- A)" exp [2iOGl exp [- i$l- 
* exp [- v%I. The ratio of magnitudes of the second to the fist term in g(z) is exp [- Sv&] - - (using our results below), and similarly for the first to the second when z CC exp [ - ioG] 
(corrugations on the lower side). Hence, the coupling between corrugations on either side is 
very weak and that on the upper (lower) side of the wedge can be very well approximated by 
the fist (second) term in g(z). So for a sidebranch tip at z = A n  exp [io,], we take 
g(z) = (- A)" exp [v%l exp [@I. The fractional change of the length of the sidebranch along 
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Fig. 2. - The sidebranches of the dendrite are modelled by a self-similar *sawtooth. structure. The 
anisotropy forces the growth direction of sidebranches to the horizontal to be k e d  by the angle 9. The 
dashed line is an imaginary solid cone of head angle 0, enclosing the whole structure. (Inset: the 
geometrical interpretation of the factor (w - l)(l-c)k(w - pYk/(w - in the Schwarz-Christoffel 
transformation. Similar basic units, suitably scaled by powers of A, are connected to give the 
*sawtooth. structure.) From the triangle CDE, $ is related to E by 9 = 6, - (1 - E )  kx - (1 - k ) x / 2 ,  
where (1 - k) d 2  = x - BeE. 

its direction of growth is therefore 

AZ/Z = (-)” exp [ d G ]  sin $/sin e,, (3) 

where A” = 1 sin $/sin 8, has been used. In order to find an expression for the fractional 
change in the growth velocity we view the dendrite as an isolated charged conductor 1111. 
The growth velocity is related to the charge within a distance r of the tip as(’) 

where a is the tip charge singularity and q is the exponent introduced in the dielectric 
breakdown model[l2]. Hence, for any sidebranch tip the new growth velocity, w’ in x ’ ,  is 
related to the velocity v, in x ,  by 

v‘lq’? = (r’)-”q = (rldz’/dzltip)-bT = (w/qq)Jdz’/dzj$q. (5) 

Under the conformal mapping, tip charges are preserved such that the charge on a tip of 
radius r in x is equal to the charge on a tip of radius T’ in x ’ ,  ~ ‘ ( r ’ )  = q(r). This results in 

w’/w = Idz’/dz)$? J 11 + (dg(z)/dz)l$? 

(‘1 Note that this form has been constructed so as to give v independent of the assumed tip radius r. 
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and so to first order in g at the tips of the upper sidebranches, 

Avlv = - a? Re (dg(x)/dx) = (- l)n+'a? exp [vOG] v s c o s  ($ - OG - tg-' v) . (6) 

Consequently, condition (1) selects A in terms of $, OG and a by 

The growth is self-consistent when the envelope moves as a <<bow wave, with A, OG and a 
fixed for a given value of $. The velocity of a sidebranch Vu,b is related to the main branch 
velocity v b  simply by 

v b  sin 0, = sin (0, - g5) . (8) 

The ratio v ,b /vb  can be calculated from the geometry using a Schwarz-Christoffel 
transformation[13]. For the velocity ratio to be finite, the tip charge singularity of the 
sidebranches must match the tip charge singularity a of the main branch. If the wedge were 
solid, then a = x/20G, but the ramification of the side structure reduces a (see below). This 
defines a new effective cone angle, Oef>OG,  leading to a natural correction to the wedge 
model. To the best of our knowledge it is the first consistent calculation that gives such a 
correction. 

The conformal Schwarz-Christoffel transformation is used to map the exterior of a 
polygon in x onto the upper half-plane in w, the boundary of the polygon being mapped to the 
real w axis. The transformation is written as 

(w - W$', 
dz -= 
dw vertices i 

(9) 

where ki x is the exterior angle turned through (in anticlockwise direction) at each vertex of 
the polygon. 

For the model dendrite of fig. 2 the mapping becomes explicitly 

where the form of the double infinite product has been severely restricted by the necessary 
condition that it converge. The main tip is mapped onto w = 0, the tips of the sidebranches to 
w = f p n  and the fjord vertices to w = k pepn. The parameter E (0 < E < 1) thus fixes the fjord 
vertices, but it also gives the factors in (10) the geometrical interpretation shown in the inset 
to fig. 2. Thus + is given by 

$ = E k X  + OG - (1 + k) x / 2 .  (11) 

The scaling around the main tip can be related to the sidebranch spacing. For the sidebranch 
tips at w = f p" to correspond to z = A" exp [k i&] we require the mapping z(w) to have the 
scaling symmetry x(wp) = Ax(w). Since the infinite product is invariant under w + pw, we 
have p = A" on comparing with (lo), and w a x a  for the scaling around the main tip. The 
general solution of the scaling equation is 
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I(xl, x2) I dww(l-”)/a fi ( ( ~ 2  - p 2 n ) l - c ( ~ 2  - p2n+2)c/(~2 - p”p2n))(l-a)/a 

- m  I 

where fperidic has period 1 and in all our calculations has amplitude less than of the 
constant term A,  along the direction forward from the main tip. We therefore identify the 
first term with the scaling behaviour around the main tip and it is convenient to represent its 
exponent in terms of the equivalent effective angle of a conical absorber, giving Be*= 
= x lnA/2 lnp. In what follows we also impose the constraint that the scaling around the 
main tip, dzldw a ~ ( l - ~ ) ’ ~ ,  matches that around each of the subtips so that k = (1 - a)/a. 

The final piece of geometrical information hidden in (10) is the true geometrical angle of 
the sidebranch tips which can be found (see fig. 2) through 

. 

where the last form comes from integrating the SC transformation and 

vj = (aAj)-ac.  (12) 

To summarise our results, we have modelled the structure of the self-similar dendrite in 
terms of three parameters A, BG and $, and have proposed two equations governing its 
evolution: eq. (7) (a result of hypothesising that the selected structure is marginally stable) 
and eq. (8) (the consistency of growth condition). The ratio vb/vU,,, needed in (8) is calculated 
from (12). So after fixing one of the physical parameters A, 6, or $, the equations may be 
solved for the remaining two. 

A test for the theory is to compare our results against computer simulations performed 
by Meakin [51. In the simulations highly ((noise reduced. diffusion-limited aggregates (7 = 1) 
were grown, in which the local growth anisotropy (and hence the angle of attack of the 
sidebranches) was fixed. In table I, we compare our analytic results for A and e,, with that 
simulation for different values of their fixed parameter 4. 

The predicted geometrical angles agree well with simulation, but we found difficulty in 
measuring an absolute A from the simulations. Near the tip of a main branch, most of the 
sidebranches born are still prominent, making it difficult in deciding which ones are winning 
the competition for growth; near the centre of the cluster growth is inhibited by screening 
from the other main branches. A possible measure of A would be to consider only those 
branches that cross the equivalent solid wedge of head angle Oeff. We tried to analyse the 
spacing along the main branches in fig. 1 using this method, and found values for A($) that 
fluctuate strongly, but which are not inconsistent with o w  prediction. At least, the 
simulations seem to show the spacing A increasing with decreasing $, in agreement with the 
trend of the analytical results. For comparison, the insets of fig. 1 are constructions of the 
predicted asymptotic structures, using the theoretical values of table I. 

To conclude, we have presented a theory for the growth of a dendrite in which the 
spacing of the sidebranches and the head angle at the tip of the dendrite are solely 
determined by the anisotropy. We have found a self-consistent correction to the wedge 
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TABLE I. - Theoretical results for A and 6, for various anisotropies 9. The value of 6, that 
corresponds to the envelope that encloses the tips of the sidebranches in the simulations, is included 
for cmparism. Note that the work of ref. [ll] shows that sixfoldgmwth is unstable with respect to loss 
of mjor  fingers, so that its angles are less clearly defined. 

Sidebranch Theoretical values Simulation 
angles measured from ref. [51 

+ A 6eff 0, 6, 

2n 
3 
2x 
4 

- 
- 
2n 
5 
- 

27r 
6 
- 

0.834 174.5" 172.6' (172 -t 1)" 

0.653 168.8" 164.0" (164 -t 1)" 

0.524 165.9" 158.5" (162 +- 2)" 

0.437 165.2" 155.8" (150 3- 5)" 

approximation. As mentioned above, the coupling between sidebranches on either side of 
the main stem is expected to be very weak. Analysis of the coupling between the two terms 
in g(z) eq. (2) leads to a stronger instability when the sidebranches on the upper side are 
symmetric with those on the lower than in the antisymmetric configuration. Although one 
may therefore expect the symmetric mode to be selected, the simulations show no such 
correlation. This may be due to the coupling being too weak to survive the destroying effect 
of small random structural fluctuations (noise), present in these DLA structures. 

* * *  
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