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Stress transmission and incipient yield flow
in dense granular materials

Raphael Blumenfeld

Earth Science and Engineering, Imperial College Londomdan SW7 2AZ, UK
and
Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 OKE

Abstract. Jammed granular matter transmits stresses non-uniforkéynb conventional solid, especially when it is on the
verge of failure. Jamming is caused by self-organizatiograhular matter under external loads, often giving risesttworks
of force chains that support the loads non-uniformly. Anang debate in the literature concerns the correct way toatibe
static stress field in such media: good old elasticity thewrgewcomer isostaticity theory. The two differ signifidgrand,
in particular in 2D, isostaticity theory leads naturallyftmce chain solutions. More recently, it has been propobatireal
granular materials are made of mixtures of regions, somauviet) elastically and some isostatically. The theory tacdbe
these systems has been named stato-elasticity.

In this paper, | first present the rationale for stato-etégttheory. An important step towards the constructiorhés theory
is a good understanding of stress transmission in the regibpure isostatic states. A brief description is given cerdly
derived general solutions for 2D isostatic regions withurdform structures, which go well beyond the over-simiptcture
of force chains.

I then show how the static stress equations are relatedlgitedncipient yield flow and derive the equations that gove
yield and creep rheology of dense granular matter at thalirstages of failure. These equations are general andidescr
strains in granular materials of both rigid and compliantipkes.

Keywords: Stress transmission, failure, yield
PACS: 45.70.-n, 83.80.Fg

INTRODUCTION

The ubiquity of granular materials in nature and their oveglmning technological significance have focused much
attention on these systems. A coherent fundamental uraelisy of these materials in general and of their behaviours
in specific regimes in particular, is yet to emerge. The lalckuzh understanding handicaps effective modelling for
practical applications. As matters stand currently, arggpess towards a first-principles modelling has significant
scientific and applied benefits. Particularly problematimibdel are dense granular materials (DGM). One reason that
constitutive relations in the dense regime have been diffcobtain is that, although the material may appear unifor

to the eye above some scale, the internal stress distnibistioot - DGM transmit stresses non-uniformly along force
networks[1, 2, 3, 4]. The network re-organises as the naterioaded by external forces, with its structure contityua
failing and re-consolidating. The configurations of thessrnetworks determine, in turn, where failure occurs, ds we
as the dynamics as the material deforms. Thus, ultimategssdetermination and dynamics must be modelled self-
consistently; we are currently still far from this goal.

Nevertheless, a significant step in this direction is a funelatal understanding of the way that granular matter
transmits stresses when the structure is given. This probigs been debated much in the literature. Conventional
models, based on constitutive relations involving strainswain rate, are hard-pressed to explain the observed
nonuniform stress fields. Therefore, it was suggested imitenineties that these could be explained by assuming that
DGM are statically determinate, or isostatic[5, 6, 7, 8]léwing this suggestion, phenomenological continuousssty
structure constitutive relations were proposed [9, 10,12113, 14, 15]. It was assumed that there are linear rektion
between the stress components, with the coefficients sometlated to the local structure. In two-dimensional
systems, there is only one relation (there are three in tireensions):

Aoy + Bny+ CUyy =0. (1)

In the treatments that followed this suggestion, the cdefiis A, B andC were taken to be constant and uniform
throughout the material. It has been proposed that, if tihels¢ions lead to hyperbolic set of stress equations - in
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contrastto the elliptic nature of the equations of elatstitieory, for example - then the solution would propagategl
force chains, thus reproducing the experimental obsemnstin two dimensions. Since the stress coefficients in the
stress-structure relations were constant, the charstitgoaths, and consequently the force chains, were unallyid
straight.

This treatment remained phenomenological until the enti@twentieth century and quite controversial on many
levels - a controversy that will be discussed in slightly mxdetail below. In 2002, this formalism received a firmer
theoretical support when equation (1) was derived from firstciples, relating the coefficiens B andC directly
to the local granular structure[16]. This formulation didegy with the phenomenological aspect and made the two-
dimensional theory parameter-free. The constitutive Bgu#l) was then rewritten in the form

Q:0=0, (2)

whereQ is a rank two tensor that depends uniquely on the local gaaustiucture. In a later work [17] it was shown
that the geometry constrains the components of the steitémsorQ in such a way that the equations are indeed
hyperbolic, as had been conjectured in previous works[8, 9]

That relation (2) can be derived from first principles is igiing - constitutive closure relations are normally
postulated. Nevertheless, the basic derivation in [16]avast sufficient. To clinch the applicability of this relatidt
is necessary to be able to coarse-grain it to the macroSdseproved to be a problem: the components of the fabric
tensorQ were shown to fluctuate locally around zero mean, hinderoagse-graining by simple volume averages.
However, it was observed that the fluctuations are antietaied between neighbouring particles, much in the same
way that disordered antiferromagnetic spin systems avedsst neighbouring spins. This observation was then used to
reformulate the problem in [18] in a way that could be coaysEned. This resolved the problem, finally establishing
equation (2) as a general closure relation for ideally agsgranular materials of rigid particles. It should beeatbt
that, once the fabric tens@ is given, a unique solution exists for any arbitrary comboraof boundary stress loads
[19, 20].

Nevertheless, the development of isostaticity theory heenlfraught with other doubts and criticism. Granular
assemblies in nature are not necessarily isostatic andsifellness of this concept to general particulate systems
has been questioned[21, 22]. In the original formulatiom plarticles were considered perfectly rigid and convex,
hence making contacts at points. This led to concerns oeevdhdity of the theory when the particles have finite
compliance. This issue was examined in detail in [23], wliteneas shown that increasing particles compliance does
not invalidate isostaticity theory altogether. Rathee, tieory needs to be corrected and the corrections incratise w
particles compliance and contact area between particsettr, significantly, the corrections decrease rapidthwi
increasing system size.

To be specific, consider a granular assembIWddtiff, but not perfectly rigid, particles. The mean cooation
number is such that, had the particles been perfectly ritigl,assembly would be isostatic. The analysis in [23]
shows that, under a given external loading, the stressigolut the material would be the isostatic solution, but
with corrections. This was shown as follows. First, the o&dtpoint of each contact surface was identified and an
alternative approximate system was considered, whosedna@ular contacts were points located at those centroid.
To choose the approximate system, it was noted that the sghdion could be found by solving for an equivalent
system whose contact forces acted at contact points logat@ibusly across the contact surfaces. The locationef th
equivalent contact points, however, needs to be deternfinéide effective surface contact force distributions, Whic
are unknown. In the approximate system, the contact pofatsteosen at the centroids of the contact surfaces.

Now, the alternative approximate system is also marginédig and, therefore, it has an isostatic stress solution.
The error between this solution and the correct one is dubedlifferences between the approximate and correct
equivalent contact points. This error was then shown toedesers adl?, wherea = 3/4 and 89 in two and three
dimensions, respectively[23]. It was therefore conclutteat, on macroscopic sizes, the isostatic solutions of the
approximate systems converge to the correct stress smuticcompliant-particles systems.

Another concern had been the range of applicability of &asty theory for materials that are not precisely at
marginally rigid stress states. The problem was that therjhieas been developed under the assumption that the mean
coordination number is exactly right to make the materiafisally determinate. The contention was that the status
of the theory is unclear when the mean coordination numbes gdove that value. This is a valid contention - it
is clear that the equations can no longer hold as originaltyntilated. However, it turns out that the way that the
solutions deteriorate, whether abruptly or gradually,risraportant issue. This issue will be discussed later in the
paper, following insight drawn from experimental obseisas [24]. That discussion will be shown to lead to two

168



conclusions: (i) that the isostatic, or marginally rigithte behaves as a critical point and (ii) that the stressuiena
of real materials depends on the proximity to the criticahpfl7, 25].

A third concern is seemingly fundamental. It had been cdujed [8, 12, 13] and then shown more rigorously [17]
that (2) leads to hyperbolic stress equations, whose salifiropagate along characteristics paths (CPs) (see)elow
The CPs are determined by the structure, namely, the t€haad they define preferred directions. The question then
is how can this happen in isotropic systems. Unfortunatkly,question has not been discussed in great detail in the
literature. The view of this author is that the structure oaly be isotropic under isotropic loading. DGM respond to
applied loading by local rearrangement and self-orgaioisat he material response to anisotropic loading cannbt bu
be anisotropic, leading to a locally anisotropic fabricsien Thus, it is rare to find, either in nature or in simulasion
DGM that are isotropic. However, we can consider a 'geduhisartropic material. To generate such a system one
should start from an isotropic structure and apply to itrigpic boundary loads, e.g. purely compressiyealong the
boundary of a circular disc. Then every point along the baumyés a stress source of two CPs that propagate into the
system. This gives rise to an isotropic distribution of QP#hie material and, correspondingly to an isotropic sotutio
Thus, isostaticity theory should not violate any commorssesymmetry.

An interesting simulation to test this issue [26], claimbogthe contrary, is nevertheless inconclusive. Such tests
should make sure of the isotropy by: (i) loading the systestrapically (i.e. independent of direction rather than
equally along the axes, which leads to isotropy in fluids mitin DGM) and (ii) that the isotropy is reflected in the
statistics of the fabric tens@). Thus, this contention still needs to be substantiated.

It should be noted that the above argument suggests that pletenstress theory of granular materials should
ultimately take into consideration the material organisatinder the loading, a point that has been alluded to above.
Turning to failure and yield of DGM, it should be commentedttithe manner in which DGM transmit static

stresses is significant to the understanding of these raktexiell beyond static phenomena. Not only do DGM
exhibit simultaneously properties that are normally agdged with solids, liquids and gases, but they also display
rich behaviour that is uniquely their own and cannot be olesin other conventional phases. Thus, static stress
transmission is an obvious first step to study the poorly tstded (and therefore inadequately modelled) dynamics of
DGM. One particular area, where modelling could benefit mfoaim improvement in fundamental understanding, is
of flow and rheology. The importance of flow of DGM to many réfd-applications cannot be over-emphasized. For
example, in powder metallurgy and the transport of cerselsgds and coal, it is important that the material fail easily
locally so that it can flow without blockage. Yet, in other pation, such as construction, it is essential that saéls b
sufficiently stable so that structures do not collapse. It bloese cases we need a good understanding of the basic
physics in order to model: (i) the threshold to failure; (i failure mechanisms and (iii) the post-failure dynaroics
flow.

The main problem is that, unlike in fluid mechanics, wherecthrtinuum equations of motion are well established
- the Navier-Stokes equations - there is no agreement orotitenaous equations that describe rheology of DGM. A
major stumbling block is that the homogenization from theipke-level dynamics to the macro-scale is sensitive both
to the physics on the discrete level and to the coarse-gigpriocedure used to upscale to the continuum. Moreover,
unlike in conventional fluids, which have no yield threshtidlow, most real DGM flow only once they have been
loaded above some stresses, known generally as the ‘yidlksl Thus, the failure of DGM is affected directly by
the way that the material supports static stresses. THisdusuggests that an essential criterion for a good moael is
seamless convergence to the correct stress state whenvitetdjos.

In this paper, | will first review a simple experiment thatdsao intriguing two conclusions: first, that isostatic
states can be approached very closely, or even exactlgedaln real systems and, second, that isostatic states act a
critical points in the sense that they sport a diverging tescale. The physical interpretation of this lengthscale a
its relevance to understanding the physics of DGM will beadésed. | will then describe a recent development on
modelling failure and yield of DGM. Specifically, | will prest a derivation of the equations of flow as the material
fails. The relation between these equations and the coemeegto isostatic static stress solutions will be shown and
discussed, thus establishing a seamless transition fremstdiic to the quasi-static dynamic theories. Many of the
results reported here have been obtained in collaboratithnRv C. Ball and S. F. Edwards.
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A TWO-DIMENSIONAL FREE-FALL PILING EXPERIMENT

Mean coordination number and marginal rigidity

In this section | describe the experiment reported in [24] discuss an interesting interpretation of its results. The
main aim of the experiment was to investigate the realitgldhd nature of marginally rigid states. Before getting
down to the experiment, it is constructive to discuss thelitams that define such states.

It is clear that there is a minimal number of contacts perigar{called the mean coordination number), below
which the system cannot be mechanically stable, exceptifioeasure zero of metastable configurations. Marginally
rigid states are mechanically stable configurations ofigdagt that are minimally connected. In such states the-inter
granular forces are statically determinate, a fact thatbmaased to identify the condition for marginal rigidity. Shi
condition depends on several characteristics of the pestilcluding whether they are frictional or frictionleasd
spherical or not. To some extent, it also depends on systamit limiting the discussion to macroscopically large
assemblies, where this dependence is negligible, | witediard it in the following.

Consider ad-dimensional assembly & (>> 1) rigid particles of sufficiently high friction coefficiensuch that
negligibly few particles slipped as it was constructed.4ggie the number of force-carrying contacts (defined here as
the coordination number) of partiote The corrections due to size effects are of omdefd-1/4 in d dimensions and
hence negligible. The mean coordination number per paiiscl

z

_ 1
Z= N Zg ) (3)
g=1
and the total number of inter-granular contacts is thesefor
1 _
Ncon’( = ENZ . (4)

At each force-carrying contacts there is an inter-grarfolae to be determined, giving altogetltbd.on unknowns.
To solve for these we have at our disposal the balance conditFor each particle there atdorce, andd(d — 1)/2
torque moment, balance equations. The latter is the nunflzeses of rotations id dimensions. The total number of
equations is then

d(d+1)
S (5)

For the system to be statically determined, the number o&topus should equal the number of unknowns. From
expressions (4) and (5) we see that this gives a conditiothéomean coordination number

Neq:N[d-l-d(d—l)/Z}:N

7=zl =d+1. (6)

In assemblies of frictionless particles, the directionkaf force vector at each contact point is determined by the
geometry (specifically, by the normal direction at the lomahtact), which leaves the magnitude of the force as the
only unknown. It follows that the number of unknownNgnt = %Nz_, while the number of equations is the same as
in (4). Again demanding that the number of equations be eguhke number of unknowns, we find that the condition
for static determinacy is that the mean coordination nuriger

7= =d(d+1). @)

Aredundant case to be considered is when the particles aratbrand perfectly spherical. This case is rare in nature
but it is used frequently for numerical simulations. In tbése, the number of unknowns is again equal to the number
of contacts, but the number of equation is not the same ag ipréfvious cases. Due to the shape of the particles, when
the forces are balanced on a particle, the torque balan@iens for it are also automatically satisfied, since all the
force direction lines pass through the particle centers fikes the torque balance equations redundant, leavipg onl
Nd equations to solve. It follows that, for static determinatguch systems, the mean coordination number should
be

7=75=2d. (8)
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FIGURE 1. Two rigid particles in contact through two poinrdsandB. The two contact forces in (a) can be decomposed into
the four components in (b), of which only three can be resbl&nce the two-components of the forces are equal, opposite,
and act along the same line, then the stress around the twolggis unaffected by this indeterminacy. Consequerié/rhean
coordination number is larger than for systems with onlyvesrparticles.

The above considerations have been around for a long timécinsome of these arguments date back to
Maxwell[27, 28]. Nevertheless, they do not hold for all piagjs. In particular, they include a couple of underlying
assumptions. One is that in particles of arbitrary shapetiseno redundancy of any of the torque moment equations.
For example, if the contact force vectors around a partitleppen to pass through one or more of its axes of rotation
then the torque around those axes ares automatically zdrihare is no need to invoke the relevant couple equations.
In the following | assume that such occurrences are very iafact of measure zero. Another assumption is that the
particles are rigid and convex and, consequently, thattécfgacan only make contact with any neighbour at one point.
This assumption fails when particles have non-convex shageereupon two particles can make contact at two points.
To understand the consequence of lifting the one-contaict-pssumption, consider a piling experiment, where parti
cles with high friction coefficients ‘fall’ very gently, stiat they come to rest to form a stationary pile without siiygpi
and without disturbing the rest of the pile. éhdimensions, any solid, and in particular both the fallingtiole and
the consolidated pile, hakd + 1) /2 degrees of freedom: motion along one of thdirections and rotation around the
d(d—1)/2 axes of rotation. Thus, prior to the collision the partiplke system had(d + 1) degrees of freedom. Once
the particle has settled, the new consolidated pile hasa{ly- 1) /2 degrees of freedom. This means @l + 1) /2
degrees of freedom have been ‘lost’ and these prowd@es- 1) /2 conditions. From these conditions we can solve for
the forces between the recently-arrived particle and tlee At each contact Newton'’s third law (action and reaction)
is satisfied, which gives that there ate- 1 unknowns per particle to solve for and, when there is only jpoint of
contact between particles, then we could solve for the-gtanular forces if there are on averafye 1 contacts per

particle. This is an alternative derivation the above vamé.

However, when the shape of the landing particle has a nowexguart, the particle may lean stably against only
one particle, in which case the above argument needs to basigered. For simplicity, the situation is illustrated in
two dimensions in figure 1. Particles contacting at two potréinsmit two inter-granular forces and hence give rise
to four unknowns. This is one unknown more than dte + 1) /2 = 3 conditions that can be derived from the ‘loss’
of the degrees of freedom. Therefore, one unknown must reindeterminate. Fortunately, this does not affect the
global stress field, as we shall see next. Let us decompoferties along axesandy, wherex coincides with the line
that joins the two contact points, as shown in figure 1. We cdwedor they-components and use Newton third law
to determine that the-component of one force is equal and opposite taxtsemponent of the other. The remaining
one unresolved unknown is the magnitude of treomponent. The local stress on either of the two particéeshe
derived from the area normalized symmetric part of the fonoenent
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g 13 dg.dg
of =3 3 7%, €)

Whereai? is theij-th component of the stress on partigle)’ are the touching neighbours of this partidi,%g,f is thei-th

component of the force that partigeapplies ory, pjg’,g is the j-th component of the position vector extending from the
center of mass (say) of partiago its contact withy/, andA is the area associated with partigleSince the unresolved
X-components are equal, opposite and act along a line tatg#me contact points, then they do not contribute at all
to the forces, nor to the torque moment arogntt follows that the unresolved degree of freedom does rfetathe
stress around this particle. This argument, which was fresignted in [24], leads to two conclusions. First, the stres
around two particles touching at two points may be well definespite of the fact that not all the inter-granular forces
can be determined. Second, in counting the number of cantachave to allow for multiple contacts. The latter means
that, in a system that contains multiple inter-particleteots, the mean coordination number for marginal rigidity i
higher than the one calculated previously. To find how mughéi should? be, for example, in two dimensions, we
note that there is one such contact for every pair of doublgacting particles, increasing the mean coordination by
1/N for each one of them. It follows that the correct value for gnaal rigidity in two dimensions for a system with a
fractionw of double contacts out of all inter-granular contacts is

z=2z =3+w. (10)

This observation will be directly relevant to the experirnernbe described next.

The experiment

The experiment models free fall and pile-up of particlesia timensions (see figure 2). Model noncircular particles
of approximately 15+ 0.2cn? were punched out from a cardboard sheet, using a staintesigpsinch. The cardboard
was fibrous, ensuring that the cut edges gave high coeffiofeinter-granular friction. The friction coefficient was
estimated from slipping tests to be higher than 50. The g@astihad a slight non-convex region. The experiment
was carried out on a horizontal glass plate, with the piléding up within a U-shaped collector, whose surface was
made of a similar material as the particles. The internakdisions of the collector were 1824cn?. The particles
were initially placed on a thin transparent film, lying on topthe glass plate, at a notionally random distribution
subject to the requirement of no contacts and that the lispiatial distribution is reasonably uniform. These pétc
were then conveyed towards the collector at an approxinpeedsof 05m/min. This was done either by moving the
collector towards the particles (at high initial densities by moving the particles towards the collector via slglin
the transparent plastic sheet under it (at low initial diées). Care was taken to maintain a constant advance rate
and particularly to avoid relative transverse motion betmvéhe collector surface and the ‘free falling’ particles.
The slow fall rate ensured both negligible particle defaioraand minimisation of inertial effects, which could
transmit vibrations through the forming pile and rearraingebsequently to piling. Data was collected in the form of
photographs of the growing pile, taken normal to the planegtlar intervals during the process, and a photograph
of the ‘consolidated’ final pile. For each final pile we haveaedmined its bulk and boundary particles, the contacts
and the double contacts. The determination of the numbeomtacts was done both by eye and by taking the zero
limit of the cumulative distribution of the spaces betweemghbouring particles. Both methods agreed excellently.
Following the discussion of the previous subsection, teheine the proximity to the marginal state, we measured
coordination number as twice the total number of contastisldd by the total number of particles. This quantity, if
calculating coordination from individual particles, msatouble counting coordinations between boundary pasticle
and the boundary. Relatively few double contacts were ekskgind these were counted as two separate contacts. In
the experiment the double contacts comprised 10% of thénataber of inter-granular contacts. The photographs
taken during each piling process were also used to identifgld front (YF) - a ‘layer’ of particles that have collided
with the pile, but which have not yet come to rest. The patichat belong to this layer were identified by comparing
the intermediate positions of the particles to their posiin the final pile. The comparison was done by superposing
the photographs on top of a lightbox and determining ovetlape force of sliding friction between the particles and
the moving base played a role analogous to gravitationeéfon a stationary mass. Since the approach was at constant
(low) velocity, the falling particles did not acceleratedahe situation is indeed of free fall in two dimensions.
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FIGURE 2. A two-dimensional free-fall piling experiment. Particlage conveyed at constant slow speed and pile up against
a collector. The particle-particle and particle-collechaction coefficient is very high. The friction between fiales and the
underlying conveyor mimics gravity to press the pile agaihs collector. Photographs are taken from below to monitempiling
process.

Measurements were taken of both the density of the consetigale (figure 3) and its mean coordination number
(figure 4) as functions of the initial density of the fallingnticles. It can be observed that, as the initial density
increases the final pile density decreases. This is chaistiteof a jamming system. As particles fall, contacts are
made and broken in the YF. With very dilute initial densitgriicles join the pile and stabilize by making two contacts
with it. As the initial density increases, falling partislaterfere with one another and not all of them can make two
contacts with the stationary pile. Thus, the decrease imthmeber of contacts, and hence in the final density, is a
collective phenomenon - the evolution of the contact nekvimhighly correlated and is governed by the cooperative
stress-driven dynamics.

The experiment has a natural limit density, identified agthiat where the density of the initial particles is equal to
the density of the final pile (see figure 3). Clearly, therelbamo experimental measurement to the right of this point
since the density of the initial particles cannot exceet tfithe consolidated pile that it generates. This dengity,
is found by extrapolating a fit to the the pile density measumets as a function of the initial density, and locating the
intersection with the equal-densities line. It is plausithlat this is the density of loose random packing, sincetites
absolute limiting lowest density that one can obtain in éxperiment.

One significant quantitative result is that, on extrapakathe fit of the mean coordination numbergtozwas found
to approach 3+ 0.1, in excellent agreement with the prediction of the margiigédity mean coordination number
given in (10), combined with the observed valuenof= 0.1. This leads to the conclusion that isostatic states can be
approached arbitrarily closely. This observation has lsegported by an independent repeat experiment, carried out
with different, and more, particles[29].

Another significant observation concerns the YF. Figuredwshthree typical experiments at three different initial
densities before all the particles have come to rest. Ofquear interest is the amount of particles that belong tovtke
(coloured red). In the YF, particles are continuously #igfand moving relative to their neighbours en route to alstab
mechanical equilibrium. Specifically, observe that the banof the particles that comprise the YF increases rapidly
as the initial density increases toward the limit dengitysee figure 6). At low initial densities, the YF is about one
particle thick while close t@ it is more than 50% of the pile. This suggests that, for mampially large packings,
the number of particles participating in the YF is a finitectran of the total number of particles. This conclusion,
which needs to be checked for larger assemblies of partslggests that the size of the divergesas the system
tends to the ‘thermodynamic limit’, i.e. when the total nwenbf particles tends to infinity. These observations and
conclusions have also been supported by the experimenbitleZind Mullin[29], also shown in figure 6.

A diverging lengthscale is a fingerprint of a critical poimtdaits occurrence in marginally rigid packings gives
an important clue to the nature of the isostatic state. $ipalty, diverging lengthscales are common in second
order phase transitions and in critical phenomena [30].Adeustand the physical phenomenon that this lengthscale
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FIGURE 3. The density of the consolidated pile, as a function of theahdensity of the free-falling particles. Note that the
higher the initial density the lower the density of the fingépThe line fitting the result is a simple exponential anches both as
a guide to the eye and to provide an estimate for the critieasiy, pc. The value ofpc is determined by the intercept of the fitting
line and the equal-density line, which passes through tigénor

FIGURE 4. The mean coordination number of the consolidated gilas a function of the initial density of the free-falling
particles. the number of contacts was found both visualty lantaking the zero limit of the cumulative distribution et space
probability density between neighbouring particles. The method agreed perfectly. A straight line fit was used toegdlate the
value of the mean coordination numbergo The value ofz at p; was found to be 3, in excellent agreement with the marginally
rigid value for our pile with 10% double contacts.

is associated with, recall that, at the critical point, theam coordination number is on the verge of becoming
mechanically unstable. Perturbing a particle from its pasiaffects the particles in contact with it and they then
have to shift position too. This, in turn, affect their ndiglurs and so on. Thus, the first interpretation is that the
diverging lengthscale corresponds to the response lerigtie anarginally rigid pile to small particle displacements
The minimal connectivity of the pile makes every contacilkegye major event that typically leads to a long-range
rearrangement.

Furthermore, applying a small force to a particle in a maathyrigid pile, one expects the force to be sufficient to
break a contact. However, to prevent the contact from brgakie need to adjust the force on the neighbour particle.
This in turn would give rise to further adjustments due totdmious connectivity. This suggests that the force regpons
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FIGURES5. The behaviour of the yield front. The particles belonging®front (coloured red) have encountered the pile but have
not yet reached the final consolidated positions. The thiféereht pictures show measurements from three differgpeements

at initial densities that increase from top to bottom. At ibw density the front is less than one particle deep, whilthathigh
density it comprises more than half the pile. As the densitygases the consolidation process becomes more cogperati

P

length should also become comparable to the system sizelnerge. Note that such a thought experiment probes
nothing else but the Green function of the continuous stressry that applies to these material.

IMPLICATIONS OF THE EXPERIMENT FOR CONTINUUM STRESS THEORY

The conclusions and interpretations of the previous se@tfe significant since they point directly to a resolution of
the long-standing debate over the correct theory for remigar materials. It is the critical nature the marginaitiyd
state and the divergence of the response of the system ¢s gieeturbations, which gives us a big clue.

As mentioned, critical points are well known from the studiyraditional second-order phase transitions. A system
undergoing such a transition is in one phase initially arsdjtapproaches the critical point, regions of another
phase form and develop. A well-known example is the tramsith metals from a normal conducting state to a
superconducting one upon reducing the temperature. Thaeteriure where the transition occurs is the critical point.
As the temperature decreases toward this point, superctinduegions form, and then grow, within the initially
normal phase. At the critical temperature, the supercaimttycegions span the entire material.

The typical size of the superconducting clusters can betfigmhby measuring the the density-density correlation
function of the superconducting phase and identifying treetation length over which this function decays. As the
critical point is approached from above, the correlationgté increases until it become comparable to the system size
at the critical temperature. In systems that go to the thdgmamic limit, i.e. become infinitely (or macroscopically)
big, the correlation length diverges. It should be empleakthat, even when the system is only close to the critical
point, there are sufficiently large superconducting regittnaffect experimental measurements of the conductivity.
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Dimensionless front mass m versus p/p, (ellipses)
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FIGURE 6. The measured front (arbitrarily normalized) mass as a fandaif the initial density. The plot shows a diverging trend
as the ratio of the initial and final densities approach uaitthe critical density. (plot courtesy of Sibille and Mul[29])

Indeed, macroscopic measurements depend sensitiveleqraRimity of the material to a critical point.

This physical interpretation of the diverging lengthsdalerery similar to the situation in DGM. At the critical
densitypc, the material is minimally connected and hence fully isistd he proximity of the granular system to the
critical point can be parameterized by = z— z, the difference of the mean coordination number from theceti
value z; . Finite positive value obz correspond to existence of over-connected regions in theriah A steady
increase iz from zero corresponds to growth of the over-connected resgid the expense of the isostatic medium.

Thus, we can regard real DGM as two-phase composites: petatic and part over-connected. The stress field
in the isostatic regions is governed by the isostaticityagigns, namely, the balance conditions and (2), whilst the
over-connected regions follow a different closure relatio

In principle, it is straightforward to construct a statasticity theory. Consider a material containing a partcul
distribution of isostatic and over-connected regions. &@tmine which phase a region belongs to and the boundaries
of a region can be done by the local mean coordination nunier.exact algorithm for such a determination is
downstream from the main thrust of this paper. In a simplsiea; we can assume that elasticity theory holds in all
the over-connected regions, while isostaticity theorydlalnly in the marginally rigid regions. Then, in each region
the stress solutions are written in general form, using iffierdnt sets of equations, and the solutions in neightauri
regions are tailored to match at common boundaries. Whéeetlare practical problems in this procedure, exact
solutions are currently possible for simple geometrie$.[31

This resolves the long-standing controversy in the fieldnendorrect way to model stresses in granular materials -
whether with the theory of elasticity or isostaticity. Inense, both approaches are valid, but in different regimeal R
DGM generically contain both phases: marginally rigid o where the hyperbolic [17] equations of isostaticity
apply and over-connected regions where the elliptic eqnatof elasticity do. Thus, granular media should be
modelled by a combined theory.
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However, to implement a stato-elasticity theory, one masela good grasp of each of the separate theories. While a
good understanding of elasticity exists, that of isositgtis still rudimentary. In particular, for a long time, is@ticity
theory was associated only with force chains and long resptamgths. This changed recently when a more thorough
study of nonuniform isostatic media has been carried outZ09 showing that the idea of well isolated force chain
needs to be revised when the components of the fabric t€hace not constant across the medium.

Force chains have been observed experimentally and they naturally when equations (1) and (2) are hyperbolic
[8, 12, 13, 14]. That these equations are indeed hyperbolithe smallest scale was shown from first-principles in
[17]). The solutions of hyperbolic equations propagate@loharacteristic paths (CPs) and in the original works the
forces were finite along the CPs and vanished elsewhere, THei€Ps were equated with the observed force chains.
However, this picture is based on analyses of systems whereamponents of were uniform. The recent work
of [19] and [20] showed that the situation is more complexanse, wherQ varies with position, the CPs of the
solutions 'couple’ and ’interact’, with the strength of tbeupling proportional to the gradients of the components of
Q. The coupling led to several effects. First, and not sumgly, the CPs meander rather than be straight. Second,
the forces along the CPs decay, suggesting that force chaerdually 'evaporate’. Third, forces can ’leak’ to the
region between the CPs, with the leakage increasing withrthgnitudes of the gradients @. Fourth, for locally
sharp gradients dp, the CPs can branch. This result was significant becausplaierd observed branching without
having to invoke additional stochastic mechanism [32].sehesults form a basis for better understanding of stresses
in isostatic regions within the two-phase picture desctideove.

FAILURE AND CREEP FLOW

In this section, | focus on the physics of failure of DGM andtbe initial dynamics immediately after failure. In
the engineering community, the term failure is understonthe macroscopic continuum level, where the reference
is to observables measured on such scales. However, falaeeised by local rearrangement of individual particles.
Some such rearrangement may only lead to local deformdtatrdo not translate to global failure and result only in
irreversible behaviour, i.e. reversing the loading cdodi does not reproduce the original microstructure. Saoa |
rearrangement may spread out to span large parts of theiahatemwhich case they are regarded as global failure.
The conditions for each of these scenarios are complex aywhdehe scope of this discussion. Here, | focus on the
local failure of the contact network between particles dredinitial motion that it results in. The main advantage of
this discussion is that it allows to define an exact yieldatefand criterion, as will be shown below.

Generically, a granular system fails when the externalit@adn it exceeds a certain threshold, commonly known
as the ‘yield surface’. This is a surface in the space spabgedte individual components of the stress tensor and,
in natural granular systems, it normally encloses a finiggore However, one can imagine granular systems, whose
yield surface degenerates to a point at the origin, nantekguld yield under the smallest external loading.

For failure to occur, regions inside the material must beatlose to, marginally rigid states. Moreover, macro-
scopic failure would be preceded by an incipient marginaffid region extending from boundary to boundary. An
example of such a region is an incipient shear band. Thergtanakes sense to focus on failures in regions that are
initially in isostatic stress states. For the purpose of th$cussion, | will assume that the granular system cansfst
convex and rigid particles of high friction coefficient tdeén-granular slipping.

Generically, particle displacements occur by two mechmasisslippage of particles in contact and rotation. In
generally random granular assemblies the two mechanismmsatly take place simultaneously. In the following,
the displacement of a particle centroid is identified witattbf a point of the continuous representative material. On
the continuous level we can define a continuous displacefigdit from which a strain and strain rate fields can be
derived. Thus,

aj =

| =

5 (G50 +d0y) = €7 + &, (11)

wherevu; is the displacement in thith direction,d = d/dx andx; is theith Cartesian coordinate. The quantities
in this equation and in the rest of this section refer to eg@d$r of particles, but particle indices have been omitted
to avoid cluttering the notation. For analysis purposes iiseful to treat the rotational and slippage contributions
independently. This is not only an exercise in idealizatlbis interesting to note that there are special circuntstan
where the two mechanisms are indeed separable in the satsmdbroscopic strain rate can be achieved, at least
momentarily, either by pure slippage or by pure particlations. This happens in systems where all loops have even
numbers of particles around them. An example of a part of adin@ensional such a system is shown in figure 7.
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FIGURE 7. An ‘unfrustrated’ part of a granular assembly in two dimensi. The even number of particles around every void
loop makes it possible to divide the structure into two swhesures, black and white in the figure, such that everyigaris in
contact only with particles of the opposite colour. Asstingspin up with one colour and down with the other, maps éxectly

to an unfrustrated antiferromagnetic ground state.

In these systems, the particles can co-rotate happily, eviéiny particle rotating oppositely to its neighbours and no
slippage taking place. Such structures | term ‘unfrustfete6], in analogy to antiferromagnetic spin systems, as
explained in the caption of figure 7. It is in unfrustratedteyss that the region enclosed by the yield surface shrinks to
zero, for such systems can strain without dissipating gné&ngciting mechanically equilibrated unfrustrated sysse

by perturbative oscillatory loading, they experience wh&nown as 'floppy modes’ [33].

Energy is dissipated when two particles in contact rotatdnvénsame direction, whereupon they must experience
mutual solid friction. The situation is analogous to twoiamtomagnetically interacting spins, forced to align in
parallel - hence the term frustration. As particles of usfrated systems rotate, they displace and contacts may be
broken and new ones made. Whether the structure remainsstrafted or not is an interesting and relevant issue that
is not addressed in this presentation. To avoid this issw#l, flocus on the dynamics before the connectivity changes.

A particular example of unfrustrated systems is the defarbd@neycomb structure sketched in figures 8 and 9. We
can generate displacement of the entire right hand sideed$ttlucture relative to the left hand side about the shear
line B in two ways. One is by making all the particles on the rightchaide ofB slip over those on the left hand side,
as shown in figure 8. The slippage then occurs only along thardime. Another way is to rotate all the particles on
the right hand side, as shown in figure 9, and leave the paditkhe left hand side stationary.

Focusing first on the slipping strain rate, let the shear Brigass through the contact between partigesdd
(figure 9) and let the tangent unit vector to their surfacesatontact point b9 = S, as in figure 7. The normal
to the surfaces of the particles at the contact poin@‘?sé £f99, wherese is ar/2-rotation operator. In terms of these,
the symmetric strain is proportional to

1
Wi =5 (a8 +08%7) . (12)
wherefj is the jth component of the unit vectér It follows that the slippage strain rate at this contact is

&= Ay, (13)

whereA is the displacement rate in the tangential direction. As lnadl see below, this first-principles formulation of
the slippage contribution on the granular level has adgstaver traditional plasticity-based models. Wiyjjecan
be determined, in principle, from the local structure, teA is an unknown scalar field that needs to be solved from
the flow equations.

The rotation-based strain rate is interesting. Considetdbal microstructure around a partigein contact with
particlesgs, 92, ..., 0n (e.9g.n= 3 in figure 10). We wish to derive the shift in the centroid of ttontact points (i.e.
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FIGURE 8. An unfrustrated deformed Honeycomb structure of particlesbe sheared along three shear lide®, andC. For
example, displacing the half-system to the right of shemBirelative to the left hand side, can be achieved by slippiegtntacts
along the shear lines in ttg direction, which is determined by the geometry at theseaaigt

FIGURE 9. Pure rotation strain in an unfrustrated deformed Honeycetniccture of particles. The system can be strained by
rotating the particles to the right of the shear IBiéthe g particles) by a small angl@ in the shown directions. If we keep tigé
particles stationary, the entire right hand side of theesysvould displace relative to the left hand side.

the mean position vector of these points) due to an infimitaBy small rotatiorf. Since for an infinitesimal rotation
this is a linear-order calculation, then we can consideralswtation around each of the contact points and superpose
the contributions. This calculation leads to the result

*=Qf6. (14)

The tensoRT turns out to be the transpose of the ter@dn eq. (2) (which is symmetric anywa@" = Q).
Thus, we can write now the strain rate for general two-diritared systems, whether frustrated or not,

& =Ay +Qfw, (15)

wherew = 6 is the local angular velocity field, measured through pkertictations.
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FIGURE 10. To calculate the strain that results from pure rotatiorateothe central particle by a small andleTo linear order
this is the same as rotating the centroid of the centralgady this angle around ever contact point and superpokimgeisults to
find the displacement of that centroid. The result is thasghemetric strain is as given in equation (14).

Next, let us write explicitly the local yield criterion. Biag the condition for slippage between participsndg’ on
da Vinci - Amontons - Coulomb friction threshold criteriome have

|o-f|>po-¢ 1, (16)

where we have omitted the superscrigts from f. The macroscopic yield threshold can then be written in #eee
form

Y(G):lfg{lfHﬂa~f|7ua~s-f)}. (17)
9

When the tangential force at each and every contact is bélewield threshold (o) = 0. As soon as any of these
forces increases above the threshold the particular cosiips andy = 1. This is then a legitimate yield function that
describes failure when its value increases above zero.

The above strain rate equation is quasi-static, thus gatigthe static stress equations at all times. These are the
continuous form of force balance equations

div- 0 = Fext (18)
and of the torque balance equations

og=o0o'. (19)

In addition, the stress-structure relation (2) is also pétthe set of equations.

It should be noted that we need no independent energy equdtie energy dissipation can be determined directly
from the existing equations. It is constructive to examime énergy dissipation. To this end, multiply equation (15)
from the right by the stress tensarand take the trace of the resulting tensor. Since the prasegsasi-static, the
stress tensor is static at every moment and the quantityedefthand sideg: o, is exactly the energy dissipation rate.
Considering the two contributions on the right hand side awticipate dissipation only from friction due to slippage
between particles in contact; rolling of rigid particlessowne another should not give rise to dissipation. Thus, we
expect all the dissipation to come from the first term

€:.0=Ay.o. (20)

Note that this equation can be used to measure the scalarAielkperimentally. From the left-hand-side term
describing strain rate due to rotation we obtain
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Q" :ow=0. (21)

We now note that equation (21) should hold for any arbitraxyudar velocitycw and therefore the relation should be
independent of it. We then obtain that, in two dimensi@is: 0 = Q : o = 0, which, fittingly, is exactly the stress-
structure relation (2) for the static stress field. Not oslthis consistent with the static equations, but it also joiexs

the bridge between the quasi-static dynamics and the statition - it shows that, when the motion described by the
above yield equation stops, the system ‘lands’ on an isosiess state - the correct state to land on because tle yiel
surface corresponds to marginally rigid states, as discLaBove.

I conclude this section by pointing out that the set of equretidescribed above, and in particular the strain rate
equation (15), can be extended to a more general descrigtimgsemblies of non-rigid particles. In such assemblies,
equation (15) has to be modified with an additional term onrifjlet hand side, describing strain rate due to the
compliance of particles. This is a purely elastic term anldijrzg it, the equation reads

&j = Ayj + Qfw+Cijiu 0 (22)

whereGijq is a conventional compliance tensor that depends locallpestiffness of the particles in the absence of
slippage and rotation. Note that the additional term giv&s to elastic energy, in addition to the dissipation due to
slippage friction.

CONCLUSIONS AND DISCUSSION

To conclude, | have reviewed in this paper recent advancesvorcontroversial issues. One concerns the debate
in the community on the correct modelling of the static ftrigansmission in general real dense granular materials
(DGM) and the other concerns the equations that govern thiedasubsequent initiation of flow, of DGM. The recent
history of isostaticity theory and its basics have beencieat briefly and, in particular, the sensitive dependence of
the theory’s validity on the marginally rigid nature of theterial.

A key experiment has been described, which showed that: dfgimally rigid states are realizable in DGM and
(ii) that the isostatic state behaves as a critical pointhia $ense that a particular response length diverges in
the ‘thermodynamic’ limit - the response to localized dé&s@ments and application of forces. The realizability of
marginally rigid states gives initial support to the relewa of isostaticity theory to real systems.

The second result of the experiment has been shown to leadatereaching conclusion: that real DGM should
be regarded as two-phase composites - one phase made ohaligrgigid regions, where stress transmission is
governed by the isostaticity equations, and another phfa@eeo-connected regions, governed by more conventional
equations, possibly the elasticity equations. The diver¢gngthscale at the marginally rigid state has been artgued
correspond to the typical response length to stress patiars (basically, the response length to the Green fumctio
and, consequently, it corresponds to the typical lengthoofd chains in two dimensions. Indeed solutions to the
general isostaticity equations in two dimensions consistfiitelylong force chains (albeit with the caveat that force
chains may eventually disperse, as shown in [19, 20]) andiorezd above.

The two-phase model of real granular materials, descrilged, lwhich has been called stato-elasticity, leads to
an interesting situation that has no parallel in traditistadies of composite materials. In conventional comessit
e.g. of two different electrical conductors or two subsenwith different elastic properties, the phases satisly th
samefield equations (e.g. Laplace’s equation) but with différemnstitutive parameters. In the above examples, the
electrical conductivity or the elastic constants wouldeatibetween the two phases. In granular materials, it is the
very form of the field equations that is different. To emphaghe significance of this difference, suppose that the
over-connected regions can be modelled by elasticity th@dwen the closure of the stress equations in those regions
is via the compatibility conditions and a stress-straimtieh, while in the isostatic regions the closure is through
sterss-structure relations. This has crucial consequenhbée the elasticity equations are elliptic, those of istisity
are hyperbolic, which means that global solutions over titseemedium are difficult to obtain. This is an issue that
is currently studied by this author.

Finally, | have reviewed a recent model for the failure of aNd@nd the rheology that follow immediately after the
failure. A set of equations has been derived for such flow. ddueations are parameter-free - a significant advantage
over most many models in the literature. Another advantageit the set of equations has transparent unknown fields
that need to be solved for and there are just enough equaticudve for these fields. The equations hold for DGM
that are at marginal rigidity before failure and after flovslt@ased and, in particular, they make sure that the system
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is in a correct static stress state once the motion stopssiféie rate equations, which is at the heart of the formalism
includes three mechanisms: slippage, rotation and paxtapliance.

Interestingly, equation (22), with only the last two ternmstbe right hand side, also describes iso-auxetic materials
[34]. Itis expected that this equation would find more aglmns, another issue that this author is looking into.
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