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Chapter 3

On entropic characterization of granular materials

Raphael Blumenfeld
Earth Science & Engineering, Imperial College, London SW7 2AZ, UK

and
Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

This chapter presents recent developments in entropic characterization
of granular materials. The advantages of the formalism and its use are
illustrated for calculation of structural characteristics, such as porosity
fluctuations and the throat size distribution. I discuss the relations be-
tween the entropic formalism and stress transmission. It is argued that a
new sub-ensemble of loading distributions is necessary, which introduces
a tensor temperature-like quantity named angoricity.

1. Introduction: the entropic formalism

The introduction of statistical mechanical methods to analyse assemblies of
granular systems has led to the development of new concepts in the field.
Most notable are the concepts of compactivity, the analogue of temperature,
and of a volume function, the analogue of the Hamiltonian. The approach
is based on a description of the entropy of the granular structure, namely,
the statistics of configurations that a collection of grains can assume, given
that they are confined to a container of a given volume V . This approach,
developed originally by Edwards and collaborators,1 has been prompted by
experimental observations2 of a reversible behaviour of post-vibrated gran-
ular beds (albeit with intriguing irreversible precursors). The reversibility,
and more importantly the reproducibility of measurements of bulk proper-
ties, suggest the existence of an ensemble of equilibrium-like configuration
states. Further support for the approach has come from numerical simula-
tions.3

The formalism has many parallels with conventional statistical mechanics
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of thermodynamic systems. A central concept is a partition function

Z =
∫

e−W({q})/XΘ ({q})D{q} ≡ e−Y/X , (1)

that depends on: {q} - a complete set of degrees of freedom (DOF); W - a
volume function that is the analogue of the Hamiltonian in thermodynamic
systems and which depends on the DOF; Θ ({q}) - a probability density
that describes the statistics of the DOF and imposes the constraint that
the structure remain connected. Once these constraints, embodied in the
form of δ-functions, are satisfied, the function Θ can be regarded as the
conventional density of states. The scalar X ≡ 1/β, named compactivity,1

is the analogue of the temperature. The analogue of the free energy, named
the free porosity, is Y = − ln Z/β4.5 The configurational entropy is S =
β2∂Y/∂β and the mean porosity is V = Y + XS = ∂(lnZ)/∂(β). Using
this formalism, many other parallels can be, and have been, made between
thermodynamic systems and granular systems.
In spite of experimental and numerical testimonials, the general applica-
bility of this approach has been controversial. In particular, it has not
been clear how the idea of volumetric entropy can be used to understand
macroscopic properties of granular systems. Nevertheless, the prospect of
harnessing the power of statistical mechanical methods to the difficult prob-
lem of granular systems has been very appealing.
In addition to lingering skepticism, a significant hurdle to a regular use
of the formalism has been the lack of a suitable explicit volume function
W that is both rigorously additive when summed over all grains and con-
venient for analytical and computational purposes. As a result, several
approximations have been used in the literature, leading to model-sensitive
results. The form of the volume function is significant both because it is
the vehicle for the derivation of explicit estimates of structural properties
and because it identifies the phase space that defines the structure of gran-
ular systems. This problem has been resolved recently both in 2D4 and
in 3D,5 with the introduction of a new partition of he granular space. In
this description, grains are replaced by representative polyhedra (polygons
in 2D), constructed from the contact network of the original grains. The
grain polyhedra surround cell polyhedra that represent the pores of the
original structure. This description makes it possible to tessellate the space
by topologically identical units, called quadrons.5 The details of the con-
structions and the tessellations are explained in figures 1 (2D) and 2 (3D)
and their captions. In terms of these, a volume function can be identified
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as a sum over quadron volumes6

W =
∑

q

Vq . (2)

The quadrons are the fundamental volume elements. A z-coordinated grain
in 3D (2D) can be regarded as a composite of several quadrons - z in 2D
and 6(z− 2) in 3D, a picture reminiscent of quarks in elementary particles.

Rcg

r cg

grain g

loop c

g

Fig. 1. The geometric construction around grain g in 2D. The vectors !rcg connect
contact points clockwise around each grain anticlockwise around each void. The vectors
!Rcg connect from grain centres to loop centres. The shaded quadrilateral is the quadron
associated with cg.

This construction resolves the problems of disentangling the geometrical
correlations and identifying the DOF that describe the structure4.5 The
polyhedra are defined by their edge vectors $r. Structural correlations arise
from irreducible loops, each giving a dependent vector. The number of
these loops is straightforward to calculate in 2D, using Euler’s relation,9

but not in 3D. These calculations are shown below.
Another advantage of this description is that it allows a local characteri-
zation of the structure by a fabric tensor, as described in4 (2D) and in510

(3D). The fabric tensors are useful both for quantifying the quadron vol-
umes and for modelling stress transmission in granular assemblies.11 As
such, these tensors are natural descriptors of granular systems.

2. Calculations of volume-based structural properties

Two dimensions

Let V = W({q}) be the volume function of a system of N grains, described
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Fig. 2. The polyhedral representation in 3D. The edge vectors !rcgp connect contact
points around grains and the construction of a 3D quadron is shown in stages. The
quadrons are non-convex octahedra (shown in f) that tessellate the space perfectly. Grain
volumes are composites of quadrons.

by (2), which depends on a set of structural DOF {q}. The partition
function is

Z =
∫

e−βW({q})P({q})D{q} , (3)

where P({q}) is the density of states, i.e. the probability density of oc-
currence of particular configurations of {q}. Given a mean coordination
number z̄, there are z̄N/2 contacts and z̄N vectors $r. On using Euler re-
lation, this gives z̄/2 irreducible loops, leaving z̄N DOF. Interestingly, this
is also the number of quadrons and one can use the quadron volumes, Vq,
to span the phase space.
Absence of data for P({q}) led to several approximations4,5 but a recent
study of it12 has revealed complex structure. In foam-like structure P({q})
is fitted well by a gamma distribution,

P(Vq) =
baV a−1

q

γ(a, bVmax) − γ(a, bVmin)
e−bVq ; Vmin ≤ Vq ≤ Vmax , (4)
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where Vmax $ 1/b, b is the inverse of a typical quadron volume and 3 < a <
4 and γ(a, A) is the incomplete gamma function.13 An ‘ideal quadron-gas
approximation’ of uncorrelated quadrons gives

Z =

[∫ Vmax

Vmin

P(Vq)e−βVqdVq

]z̄N

. (5)

Any volume-based structural property can be computed directly from (5).
Three dimensions
Euler relation is insufficient to determine the number of DOF in 3D. For
illustration, consider foam-like structures, where every grain has z = 4 and
is represented by a tetrahedron.5 Seen from within a pore, the ‘surface’
of a cell is made of the triangular faces of the nc

g grains surrounding it, of
the contacts between the triangles and of the nc

f faces that the triangles
enclose. The latter are the ‘throats’ that connect to neighbour cells. There
are 3nc

g/2 contacts and 3nc
g edges on the surface, which, on using Euler

relation, gives that a cell has nc
f = 2 + nc

g/2 throats. Summing over all
cells, remembering that every throat is shared between two cells, gives that
there are Nf = N + Nc throats, or 2(1 + N/Nc) throats per cell.
Every polyhedron edge is a 3D vector. The polyhedron of a z-coordinated
grain has 2(z − 2) triangular faces and 3(z − 2) edge vectors. The inter-
dependency of all the edge vectors is due to geometric correlation. As in 2D,
every irreducible loop obviates one vector. In foam-like structures, three of
the six edge vectors of every tetrhedron are dependent. Additionally, each
of the N + Nc throats introduces a dependent vector. Therefore, there are
in total 6N − 3N − Nf = 2N − Nc independent vectors, or

Ndof

N
=

3(2N − Nc)
N

= 3
(

2 − Nc

N

)
(6)

DOF per grain. Unlike in 2D, this value is significantly lower than the
number of quadrons per grain.
The ratio Nc/N is a key quantity. For infinitely rough convex particles, it
can be bounded by using the dual structure. In this structure, the duals
of the grain polyhedra are the cell polyhedra and visa versa. The contact
surfaces between the dual grains are the original throats. In 2D the dual
of a statically determinate such structure is also statically determinate,
but for frictionless grains, and it is plausible that the same applies in 3D.
In general, the larger is z in the original system, the smaller the mean
coordination number of the dual structure and visa versa. The lowest value
that z̄ can assume is determined by the condition of mechanical equilibrium
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for infinitely rough grains, z̄ ≥ 4.14 The lowest mean coordination number
for frictionless non-spherical grains is 12.14 This corresponds to the number
of faces per cell in the original structure, zc = 2(N +Nc)/Nc, hence Nc/N ≤
1/5.
The opposite bound is obtained as follows. The highest packing density
of identical smooth and rigid ellipsoids is achieved within a narrow range
of aspect ratios where z̄ = 14.15 Polydispersity is expected to reduce z̄.
This is supported numerically1617 and experimentally.18 Therefore, we
get a low bound by setting zc = 14, Nc/N ≥ 1/6. Therefore, the mean
number of grains surrounding a cell is between 20 and 24. Combining the
bounds with relation (6), we get 27/5 ≤ Ndof/N ≤ 11/2 and the phase
space is then Ndof = (5.45 ± 0.05)N -dimensional. Thus, the fraction of
the quadrons needed to span the phase space is narrowly bounded between
9/20 and 11/24. Choosing these DOF to be uniformly distributed in space,
reduces the correlations between them and makes the ideal quadron gas a
better approximation to compute the partition function and volume-based
structural properties.

3. Calculations of other structural properties

Not all structural properties are convenient to compute with the quadrons
as the DOF. An important example is the mean throat size, which is directly
relevant to the permeability to fluid flow. The throat areas are difficult to
express in terms of quadron volumes, but can be easily eritten in terms of
the edge vectors $r. From the considerations above, the number of DOF per
throat is

9
2
≤ Ndof

Nf
=

3(2 − Nc/N)
1 + Nc/N

≤ 33
7

(7)

and the mean number of edge vectors around a face is

5 ≤ 6N

Nf
=

6
1 + Nc/N

≤ 36
7

. (8)

The computation of effective throat sizes is as follows. A throat is a non-
planar polygon made of n triangles. The effective area to flow of a throat
between cells c and c′, whose centroids are A and A′, can be estimated
by the polygon’s projection onto a plane perpendicular to the vector $Rcc′

extending from A to A′ (see figure 3). Letting the polygon corners be $ρ′i,



July 25, 2007 12:44 World Scientific Review Volume - 9in x 6in chapter3

On entropic characterization of granular materials 49

i = 0, 1, ..., n − 1, $ri = $ρ′i − $ρ′i−1, $ρi = $ri × $Rcc′ and placing the origin at
$ρ′0, the area of the projected throat is

Athroat =
1
2

n−2∑

i=1

$ρi ×
n−1∑

j=i+1

$ρj , (9)

giving the effective throat size in terms of the edge vectors. The mean
throat size is then

〈Athroat〉 =
1

ZNf

∫ ∑

throats

Athroate
−βW({"r})P({$r})D{$r} . (10)

Computing similarly expectation values of higher powers of the sum in (9),
we can construct the distribution of throat sizes to any required accuracy
using techniques developed for the moment problem.

ri
i−1

ρ
iρ

Rcc’

centre − pore c
centre − pore c’

A’
A

Fig. 3. A non-planar throat of the polyhedral structure is a non-planar throat. The
vector !Rcc′ extends between the centroids of the cells c and c′ which the throat connects.
The effective area to flow is estimated as the projection of the polygon onto a plane
perperndicular to !Rcc′ .

The extension of this calculation for realistic throat size distribution, where
the grain shape distribution is taken into consideration, is straightforward
in the entropic formalism and will be described elsewhere. Other structural
properties can be calculated similarly, e.g. the total surface area between
the solid and the pore space, useful for estimating heat exchange.

4. The entropic formalism and mechanical stresses

The discussion about the statistics of granular systems in mechanical equi-
librium is not complete without taking into consideration the mechanical
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stresses that keep them in such states. The incorporation of stresses ex-
plicitly into the entropic formalism is a recent project in our group.19 Of
particular interest is stress transmission in isostatic materials. Why these
idealized systems are useful to understanding general granular materials
has been discussed in20.21 Stresses in planar systems are governed by

∂iσij = gj (i, j = x, y) ; pxxσyy + pyyσxx = 2pxyσxy (11)

with σxy = σyx and $g including external and body forces. The rightmost
is a constitutive stress-structure relation, whose parameters pij character-
ize local structure. Their values were initially proposed empirically22 and
statistically1 and eventually they have been derived from first principles.
That derivation also highlighted their geometric interpretation on the grain
level.11 Equations (11) can be solved under simplifying assumptions208 and
they have been analysed rigorously recently.23 All analyses confirm that
localized source loads give rise in such media to force chains, in agreement
with experiments24 and simulations.25 Here, I discuss the relations between
these solutions and the entropic formalism.
The statistical and pure mechanical descriptions have developed largely in-
dependently, but they must be related. Measurements of contact force mag-
nitude with exponential-tailed distributions led to statistical-mechanical
based explanations that are independent of the solutions of (11)2627.28

Disregarding these solutions necessitated introduction of assumptions that
weakened the models and led to much controversy.
This point can be illustrated in jamming of slowly sheared granular sys-
tems. The microstructure changes continuously in response to forces until
the systems jams. We can now solve for the stress field in the jammed state,
but it is the very stress solution which affected the structural characteris-
tics. Thus, a full statistical mechanical description must include both the
structural information and the boundary loading.
It is important to recall here two important differences between granular
and thermal systems. Measurements in the latter are normally done on
time scales that allow the system sufficient time to explore a sufficiently
large number of states to render the data typical. Granular systems are
in principle quenched in a given state, especially for stress measurements.
The only statistics involved here could be through ensembles of systems.
Another significant difference is that eqs. (11) are hyperbolic, which is the
reason for the chain solutions. This means that fluctuations in boundary
force loads can be felt far from the load source. For example, consider a
granular material pressed within a container by a flat plate of area S with a
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force F . Since the boundary of a granular pack is never flat then the plate
presses on protruding grains differently than on their neighbours. These
locally elevated forces act as localized load sources and give rise to chains.
If the typical distance between such sources along the boundary is larger
than the scale of resolution, or interest, then the particular distribution of
chains is more significant than the mean pressure F/S. This suggests that:
(i) care should be taken in the specification of the boundary loads and (ii)
that one cannot ignore these fluctuations in the analysis of the statistics.
To address this issue we expand the phase space of DOF to include an
ensemble of all the possible loads19.28 Consider an ensemble of all possible
systems in mechanical equilibrium with given volume V and total bound-
ary stress Π. Divide this ensembles into two sub-ensembles. One, the Π-
ensemble, consists of all possible configurations of the particles that occupy
a given volume V under a boundary loading of a given spatial distribution
of force loads on the boundary. The other sub-ensemble, the V-ensemble,
consists of all the possible realizations of boundary forces that add up to
the boundary stress Π, such that the particular configuration of particles
is kept fixed. Note that these are in fact all the stresses that are confined
to within the so-called yield surface for this configuration.
The partition function can now be written as

Z =
∫

e−W({q},{f})/X0−F({q},{f})/(V Xij)Θ ({q}, {f})D{q}D{f} , (12)

where {f} are the DOF describing the boundary loads, e.g. by the forces
on every boundary grain, F is the force moment (from which stresses are
defined) and the function Θ is a product of δ-functions requiring both that
the particles are in contact and that Newton’s equations are satisfied. The
variable X0 is the compactivity, previously denoted by X , and Xij are the
components of a tensorial analogue of temperature defined via derivatives
of the entropy S with respect to the boundary stresses

Xij = ∂S/∂Πij . (13)

The tensor Xij has been named angoricity.28 The use of this formalism is
currently explored in our group. In particular, we are looking into devel-
oping a Boltzmann equation, taking into consideration both the tensorial
structural description and the newly discovered stress solutions into con-
sideration.
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