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Fluid flow through a random porous medium is discussed in the context of a network model of
a diluted array of planar cracks by an effective medium approximation. We find the threshold.-
concentration of cracks p, above which flow occurs. It turns out to be much higher than the
bond percolation threshold. The existing cracks are assumed to have a range of thicknesses.
The flow permeability is found as a function of the concentration for a number of crack
thickness distributions. Near the threshold, anomalous critical behavior, in the form of a
nonuniversal critical exponent for the permeability, is found to occur even for a family of

nonsingular thickness distributions.

I. INTRODUCTION

The transport properties of fluid flow in a random po-
" rous medium are difficult to describe by the usual homogeni-
zation techniques that assume the existence of a typical vol-
ume large enough for local averages but small compared
with the system size. Such a system is our model of fractured
rock: a simple cubic lattice in which each square facet, or
plaquette, represents a quasiplanar crack of thickness ¢ or
zero with probability p or 1 — p, respectively. In reality,
there are also thin filamentary cracks, but those are quasi
one dimensional, and it seems plausible that their contribu-
tion to the flow is negligible relative to that of the planar
cracks.

The problem of ﬂow through a fractured medium has
been discussed recently using a number of different mod-
els.'™ In all of these models the permeability k vanishes be-
low some threshold crack concentration p =p,., and in-
creases monotonically with p above it.

The aim of this paper is to calculate the permeability of
percolating planar cracks in an effective medium approxi-
mation.>® The model we apply is of square plaquettes in a
simple cubic lattice. The array of plaquettes is diluted, i.e.,
only a fraction p of the plaquetttes permits flow while the
others are blocked (or do not exist). We find that p, is higher
than the usual bond percolation threshold. We derive the
explicit variation of the permeability with p for the case of a
simple binary distribution of thicknesses (i.e., all existing
plaquettes have a fixed thickness ¢) and also for some contin-
wous distributions of the thickness [i.e., the thickness of an
existing plaquette is chosen according to a given probability
density function (PDF) ]. It is well known that effective me-
dium approximations yield incorrect results for critical ex-
ponents near the percolation threshold. Nevertheless, they
indicate qualitatively the effects that various PDF’s will
have on the critical behavior. Furthermore, away from p,
such approximations often become quantitative and can
thus be very useful in the context of flow in a porous medium
over a wide range of conditions. _

This article is organized as follows. In Sec. II we derive
the formal equation for the macroscopic effective permeabil-
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ity by applying effective medium theory (EMT) to our mod-
el. In Sec. III we consider several PDF’s with which the
thickness of a crack may be distributed. These are the binary
PDF, :

P(t) = (1 —p)8(t) +pd(t —1),
the constant PDF,
P(t) = (1 —p)&(2) + p(const),

and some singular power law (SPL) distributions that at-
tribute increasingly larger weights to the smaller thick-
nesses.” In Sec. IV we discuss the results.

Il. A MODEL OF CRACK PERCOLATION AND ITS
SOLUTION BY EMT

Consider a simple cubic lattice with nearest-neighbor
lattice spacing w. Microscopic cracks in the rock are repre-
sented by the square faces of each unit cube, called pla-
quettes (see Fig. 1). Each plaquette may either be present
with probability p or absent with probability 1 — p. An exist-
ing plaquette may be thought of as a square wXw crack of
thickness #<w. When a pair of existing plaquettes have a
common edge, fluid may flow from one to the other. Contact
only at a vertex is not enough for transmission of fluid and
such pairs are considered to be unconnected (see Fig. 1). In
order that fluid may flow through the lattice, the micro-
cracks must form a percolating cluster, i.e., a cluster that has
continuous paths between opposite edges of the lattice.
Thus, we are led to consider the percolation of plaquettesin a
simple cubic lattice. In previous treatments of random net-

FIG. 1. A section of a simple cubic lat-
tice showing present plaquettes
(ABED, CNMF, FMLI, and EFIH)
and absent ones (BCFE, DEHG,
GHKJ, and HILK). FMLI is con-
nected to both CNMF and EFIH,
while EFIH and ABED are uncon-
nected.
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works that usually focused on the properties of electrical
conductivity or elastic stiffness, only the percolation of sites
or bonds was considered. However, for the problem we are
treating, plaquette percolation seems to be a more appropri-
ate model, as pointed out in Ref. 3. We treat this model by
applying an effective medium approximation. In this ap-
proximation, each plaquette is considered to be embedded in
a uniform lattice of effective plaquettes, all of which have the
same thickness ¢, , or flow permeability &, , determined by a
self-consistency argument. A single plaquette is replaced by
one of thickness ¢ (with permeability k) which alters the
uniform flow pattern in the immediate neighborhood of that
plaquette. The properties of the effective plaquette are deter-
mined by requiring that the flow pattern remains unchanged
on the average. :

We implement this idea by modifying the EMT of the
bond network as presented by Kirkpatrick.!® Assume a large
diluted cubic lattice of plaquettes. Apply a pressure head
between its two opposite boundaries. The resulting distribu-
tion of pressure is considered to be a superposition of a uni-
form “external field” and a local fluctuating field having a
zero average. The average effects of this lattice are represent-
ed by the aforementioned effective lattice with plaquettes of
identical thickness ¢,. Consider a plaquette of the uniform
effective lattice which lies in the direction of the uniform
external field and change its thickness to z. Consequently its
permeability changes to %, distorting the flow field in that
plaquette and also in its neighborhood. In order to compen-
sate for these changes, we introduce an additional external
current i, which flows in and out at the two edges of the
plaquette ¢, which are perpendicular to the original uniform
flow field (see Fig. 2). If we denote by P, the uniform pres-
sure drop across each effective plaquette lying along the
field, then i, is given by

ip=P, (k, — k). (1)
The extra pressure drop P, induced between 4 and B by this
external current is given by

Py=iy/(k + k), (2)
where k is the equivalent permeability of the rest of the lat-
tice in parallel with k. The permeability k is calculated by
noting that in the uniform network, the total permeability
between the two edges 4 and B, k ;, is given by

kup =k, +k. (3)

Thus, we haveto find &, 5 . In order to do that we consid-

FIG. 2. The current i, is injected in 4 and B in order to compensate for the
change in the local flow pattern.
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er the situation shown in Fig. 2 again, but now with k = k.
The flow field can be thought of as a superposition of two
contributions: (i) the field that results when a current i, is
injected at A and extracted uniformly at infinity; (ii) the
field that results when a current J; is injected uniformly at
infinity and extracted at B.

If the current i, is injected into the volume A (¢ X Xw)
in such a way that the normal component of the current
density is uniform over the entire surface of 4, then the cur-
rent that ends up flowing through the plaquette AB is simply
proportional to ¢t X w. The current i; which is extracted from
the volume B(¢ Xt X w) contributes an identical amount to
the current through AB. Thus, we find for the total current
through 4B

iqp =2ig[tw/ (41w + 2t*)] =i/ (2 + t /w)=Ppk,,

4)
where P, is the pressure drop along AB. Hencé,
kg =k, (241t/w) (5)
and
k=k,(1+1t/w)y=4k,, (6)

where 4 =1 when ¢ <w. Substituting (1) into (2) and using
(6) yields

P0=Pe[(ke_k)/(Ake +k)]' (7)

In general, k may be chosen from a PDF, f(k). In order
to determine &, , we require that the average of P, over all the
values of k vanish, i.e.,

Jw Po(k. Jo)f(k)dk = 0. (8)
0

This is an implicit equation for k,. It can be solved exactly
for some PDF’s. In general, however, numerical methods
must be used to obtain &, . Note that we implicitly assumed
that the resistance to flow due to edge effects is negligible.
This assumption was recently justified for flow in a percolat-
ing network of pipes.'! We further note that there is a signifi-
cant difference between Eq. (8) and its analogue in Kirkpa-
trick’s treatment.'® This difference stems from the fact that
the basic path between the neighboring sites 4 and Bisa 1D
bond, whereas we have a 2D microcrack as the basic ele-
ment. Moreover, generalizing our treatment to an arbitrary
dimensionality d, we will always have a d-1 dimensional
crack as the basic element, while in Ref. (10) this basic ele-
ment remains a 1D bond. Therefore, only in 2D do the two
models coincide. The PDF of microscopic permeability al-
ways has the form

) = A =p)| lim 6k, ko | + oKy, ()

where §(k) is the Dirac 6 function. The term that contains
the § function represents the finite probability for the ab-
sence of a crack, while 4 (k) is the normalized PDF for the
permeability of present cracks. Before we proceed to solve
Eqgs. (7) and (8), by considering special cases of (9), we
observe that the trivial result k, =0 is a solution at any con-
centration p (see Appendix A). Substituting (9) for f(Xk) in
(8) and assuming &, #0 yields an equation for the nontrivial
solution for %,,
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© k,—k
— — h(k)dk=1—1/p. 10
fo dk Tk (k) P _ (10)

The PDF of the nonzero permeability #(k) can be ob-
tained from the thickness PDF H(r) by

dt
hik) =—H [t(k 11
(k) p [2(k)] (11)

whenever (k) is known. For the functional dependence of ¢
on k we use a classical result, namely,

k(t) =wt3/12n, (12)

where 7 is the fluid viscosity coefficient. A brief derivation of
this result is given in Appendix B. Thus, we find

h(k) = (45/9w)"k ~**H [t(k)]. (13)

lIl. SOLUTIONS FOR SEVERAL PDF’s

In the following we consider three different forms for
the PDF A(k,), which yield exact results for k,. The first is
h(k) = 6(k, — k), which represents a diluted lattice in
which each existing plaquette has the same fixed permeabil-
ity k, (thickness #,). The detailed discussion of this case
serves to clarify the method for determining the percolation
threshold p, and the critical exponent, defined through
ke ~ (P —Pc )§ fOI'p—Pp:'.

Next we treat the case #(k) = const, which corresponds
to a parabolic PDF of t, H(¢) ~¢ 2. Whether this PDF is phy-
sically realizable remains to be seen. However, it readily
yields an exact result.We then turn to singular power law
(SPL) distributions, i.e., A(k) ~h ~?,1>y> 0 for small k.
Assuming (k) is such a distribution does not necessarily
make H(z) an SPL distribution, i.e., one having a singularity
at the origin. For 0 <y<2/3, h(k) is an SPL while H(t) is
regular at the origin H(t) ~¢*, with 2>x>0. Only for
2/3 <y < 1both (k) and H(¢) are SPL distributions.

Such distributions were shown to describe faithfully the
distribution of neck widths in several models of continuum
percolation.’ Therefore, a priori, it seems reasonable that the

distribution of crack widths in rocks may exhibit such a

form. Moreover, in the context of bond conductance perco-
lation, the critical exponent was shown to depend on the
power y for such cases.”™ It is interesting, then, to study
these PDF’s also in the context of fluid flow.

A. The d-function PDF

Assume

H(t) =6(t,—1),
which leads to

h(k) =6(ky— k), (14)
where ‘

ko= (w/129)t3

and all existing plaquettes are of thickness #;. Equation (10)
then becomes

(k, —ko)/(Ak, + ko) =1—1/p
or
x=(1+1/A){p—[1/(4+ 1)1}, (15)
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where x = k, /k,. Thus, k. has a nontrivial solution which is
linear in p and becomes negative below p. = 1/(4 + 1).
Since k, may not assume negative values, the correct phys-
ical solution below p, is k, =0. As usual,'® the trivial solu- -
tion also exists above p,, but the correct solution is then the
nontrivial one that tends to k, = k, at p = 1. In Fig. 3 we
plot x(p) for t /w = 0.01. The exponent { is one as is always
the case for EMT calculations with binary PDF’s.'°

B. Constant PDF

We now assume

h(k) = 1/k,, 0<k<ky.
Relation (10) now reads

1 (* k,—k°

Performing the integration we obtain

xIn[1 4 (1/4x)]1 =S, (16)
where

S=[p—-1/(4+1)]/4p
and x = k, /k,. Figure 4 displays x(p) for ¢ /w = 0.01. Ana-
lyzing relation (16) carefully we find

in the limit p—p,* . Therefore, { = 1, but there are logarith-
mic corrections.

C. SPL distributions
In this case we assume
hk) =[(1—p)/ky~*]k=%, (17)
0<k<k, O<y<l.

Inserting (17) into (10) and changing variables in the inte-
gral yields
x"”f u__s, (18)
o A+ u*
withy = 1/(1 —y) andx =k, /k,.
We proceed to find solutions for the special casesy =1
and 2. ’

0.5 T T T 1

00 ! t I |
0.0 0.2 0.4 0.6 0.8 1.0

P

FIG. 3. x(p) for the binary PDF for t /w = 0.01.
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FIG. 4. x(p) for the continuous PDF for ¢ /w = 0.01.

1.y=1/2

This value corresponds to H(#) ~¢ '/ which is not sin-
gular at £—0. The integral in Eq. (18) can be performed
yielding

JAx tan~'(4x) "2 =§. (19)

The solution x(p) is shown in Fig. 5 for t /w = 0.01. Analyz-
ing the asymptotic behavior of x near p, we obtain
X~ (p — p.)? whichyields ¢ = 2. The departure of the criti-
cal exponent from one was shown to be a general property of
SPL distributions’~ and will be further discussed.

2.y=2/3

In this case H(¢#) = const. As before, the integral in Eq.
(18) can be evaluated, leading to

%(_:7) . [%ln( l(;j:)f) * 5% +3 ta“—'( Mﬁ_ : )]

1
=(p— /Ap,
(p A+1) P

where s*> = Ax. A plot of x(p) for this case when ¢ /w = 0.01

(20)

0.5 T T T T

0.0 { | |
0.0 0.2 0.4 0.6 0.8 1.0

p

FIG. 5. x(p) for two SPL distributions with y=1/2 and y=2/3;
t /w = 0.01 in both cases.
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is also shown in Fig. 5 for comparison with the former case.
Again the critical exponent differs from one
lim x(p)~(p —p.)>.
p—pt
In general, the asymptotic form for x (p) when (k) is given
by Eq. (17) is
x(P)~p—p)V" Y, p-pt. 2n
Heuristic, as well as semirigorous, arguments have been
advanced to explain this behavior in the cases of electrical
conductivity.” In order to obtain the general result (21) we
observe thatin Eq. (18) whenp—p} =1/(4 + 1),x-0",
and therefore the upper limit of integration tends to + oo.

Since 2 > 1, the integral converges to a finite number, yield-
ing (21).

IV. CONCLUSIONS AND DISCUSSION

We treated the problem of plaquette percolation as a
model for fluid flow in a randomly porous medium, and
solved it using the EMT approximation. Our main results
can be summarized as follows: (1) We found the threshold
concentration p,, which turns out to be considerably higher
for this problem than for the usual bond percolation; (2) we
solved explicitly for the bulk effective permeability as a func-
tion of the concentration of existing cracks. This was done
assuming a number of different probability density functions
for the thickness of the cracks; (3) The critical exponent [4
was found to be one for the binary and the constant distribu-
tions. In the latter case, however, there is a logarithmic cor-
rection. For singular power law distributions,
h(k)~k~*,1>p>0, we found &= 1/(1 —y), in agree-
ment with previous results.”®

Result (1) stems mainly from the restriction that flow
between neighboring plaquettes occurs only if they have a
common edge. In previous (numerical) studies of the flow
problem,* flow (or conduction) between plaquettes was as-
sumed to occur even if they had only one common vertex, '
which results in a lowered p.. The treatment we presented
can be generalized to higher dimensions d. We note that the
parameter 4 in Eq. (6) depends on the dimensionality of the
small volume between connected hypercracks. Thus, for
general d we would have 4 = d — 2 + ¢ /w, and the thresh-
old becomes

p.=1/(d—1+4+1t/w). (22)

The dependence of the permeability & on crack thick-
ness ¢ will also change when d 53, so that corresponding
changes can be expected in some of the values found for the
critical exponent. The actual values found for p. and for ¢
are not expected to be exact since the EMT yields incorrect
values for d > 1. However, the effect of various PDF’s on the
values of § is expected to be at least qualitatively reliable.

Let us consider the quasi-invariant B, discussed in the
literature'>-14

B.=2Zp,, (23)
where Z is the number of nearest neighbors. Substituting

(22) into (23), and recalling that in our hypercubic lattice
Z =24, yields
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B, ~2d/(d— 1){1 — [t/w(d — 1)]}. (24)

To zero order in ¢ /w this relation curiously coincides
with a long known conjecture'? advanced for percolation of
thin disks in 2D and for spheres in 3D. In our case, however,
B, is not a real invariant but depends weakly on the proper-
ties of the system (7 and w).

We found the explicit functional form of the effective
permeability for several model PDF’s. It would be interest-
ing to find this form using a realistic or measured distribu-
tion of the crack thickness in Eq. (10). The result of such a
calculation can then be compared with experimental data,
thus testing the applicability of the EMT to this problem. We
were-unable to find such a measured distribution in the liter-
ature and therefore could not examine this interesting ques-
tion.

Turning to the critical exponent £, we first note that a
general analysis shows that £ is always one if #(k) vanishes
sufficiently rapidly as k -0, so that the integral

“ h(k)dk

o Ak, +k
is finite even for k, = 0. This assertion follows immediately
if we rewrite (10) as

ke=(p—p)/Apl, p.=1/(4+1).

The departure of £ from unity for SPL distributions is in
accordance with previous results for the linear’® conductiv-
ity.

As mentioned in the text, an SPL distribution A(k) cor-
responds, for 0 <y<2/3, to a regular power law PDF of ¢,
H(t) ~¢ with2 > x>0. Thus, in this range of values of y, we
demonstrated that even regular power law PDF’s of crack
thickness may result in a nonuniversal behavior (i.e., § that
is dependent on the distribution), leading to an anomalous
critical exponent. .

The plaquette percolation model which we have treated
is also valid for the effective conductivity of metal plates
embedded in an insulating host. Hence, all our results con-
cerning different PDF’s hold for that problem as well, in-
cluding the values of £ and p.. in the various cases. Therefore,
if such a system could be realized, it would provide another
test for the applicability of this approach.
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APPENDIX A

In order to demonstrate that Eq. (9) in the text always
has the trivial solution k, = 0, let us consider for simplicity
the binary distribution,

flk) = (1 —p)8(k — k) +pd(k — k). (A1)
Substituting it into Eq. (8) in the text yields
(1 _p)[(ke —kl)/(Ake +kl)]
+plk, —k))/(4k, +k3)]1 =0. (A2)
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This is a quadratic equation and has the two solutions

k, = (® + VO + 44k ,k,) /24,

where

S =p(4+1)(k,— k) — (k, — 4k,).

Inserting k, = 0in (A3) yields a trivial solution k, =0
and a nontrivial one k, = ¢/A4. However, if one tries to ap-
proach the limit k£, -0 directly in (A2), one has to be care-
ful in order not to lose the trivial solution. Keeping this in
mind, let us consider Eq. (8) with a PDF A (k) that vanishes
for k < k,, where k, >k, > 0:

k, —k, * k,—k .
ak 1k P ke k=0

When both k, and &, are small, (A4) always has a solu-
tion for &k, that is also small. For example, k&, <k, <k, when
pissmalland — k,/4 <k, < — k{/A when p is large (close
to 1). We can now let both &, and %, approach zero and let
h(k) tend to the actual PDF. Obviously, the solution for &,
also approaches zero.

(A3)

(1—p) (A4)

APPENDIX B

Each plaquette represents a crack between two parallel
square plates (Fig. 6) through which the fluid flows in they
direction. We assume that the edges do not affect the perme-
ability. We also assume that no current flows in the x and z
directions. A force F(z) is exerted on the fluid only due to its
viscosity 7. We can thus write the following differential
equation for the y component of the fluid velocity in the
crack v

F(z) = —@wLn=wz AP, (B1)
dz

where AP is the pressure' drop along the crack. Integrating
(B1), we obtain
v=— (AP/2Ly)[2* — (1/2)*], (B2)

where the vanishing of v at z= + ¢ /2 was assumed as a
boundary condition. In order to find the total flow Q
through the plaquette we integrate this velocity field

/

X

FIG. 6. Flow between two parallel infinite plates.
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t/2 3
Q=wJ vdz =2 é—e (B3)
/2 129 L

Relation ( 12; in the text then follows.
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