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We discuss the microstates of compressed granular matter in terms of two independent ensembles: one of
volumes and another of boundary force moments. The former has been described in the literature and gives
rise to the concept of compactivity: a scalar quantity that is the analogue of temperature in thermal systems.
The latter ensemble gives rise to another analogue of the temperature: an angoricity tensor. We discuss averages
under either of the ensembles and their relevance to experimental measurements. We also chart the transition
from the microcanoncial to a canonical description for granular materials and show that one consequence of
the traditional treatment is that the well-known exponential distribution of forces in granular systems subject
to external forces is an immediate consequence of the canonical distribution, just as in the microcanonical
description E ) H leads to exp (-H/kT). We also put this conclusion in the context of observations of
nonexponential forms of decay. We then present a Boltzmann-equation and Fokker-Planck approaches to
the problem of diffusion in dense granular systems. Our approach allows us to derive, under simplifying
assumptions, an explicit relation between the diffusion constant and the value of the hitherto elusive
compactivity. We follow with a discussion of several unresolved issues. One of these issues is that the lack
of ergodicity prevents convenient translation between time and ensemble averages, and the problem is illustrated
in the context of diffusion. Another issue is that it is unclear how to make use in the statistical formalism the
emerging ability to exactly predict stress fields for given structures of granular systems.

I. Introduction

It has been shown1 that granular materials establish a
reproducible state when shaken in a definite way, that is, by
shaking at a given frequency and amplitude for a given length
of time. This suggests that granular systems can be treated in a
similar way to thermodynamic systems (via a Gibbsian discus-
sion). The first question to ask is what macroscopic parameters
characterize the steady state. The simplest thermal systems have
energy E, volume V, and a number of particles N, in terms of
which an entropy can be defined, S(E, V, N). The temperature
in such systems is defined as T ) ∂E/∂S. If an enclosed volume
of granular material is shaken with a given frequency and
amplitude for a long time, it will reach a volume V to which it
can return after a disturbance and reshaking. If this volume is
enclosed by a surface, which can sustain a loading stress, and
is again excited repeatedly in a similar manner, then its
properties will also eventually reach steady state values. The
number of configurations of the granular material is astronomi-
cally large, and an entropy can be defined, S(V, N). The
Lagrange multiplier, which is analogous to the temperature, can
be obtained, for example, by the standard Gibbs passage from
the microcanonical to the canonical description, giving the
compactivity X ) ∂V/∂S.2

Although both the temperature and the compactivity are
scalars, this need not be the general case. It is illustrative to
recall that, when angular momentum Ω is a relevant variable
in conventional thermal systems, the entropy is S(E, ω, N, V)
and, in addition to the traditional temperature, there appears a
second tensorial temperature, τij ) ∂Ωij/∂S.3 The distribution

function exp (F - H/kT) is then extended to exp (F̃ - H/(∂E/
∂S) - Ω/(∂ω/∂S)), where ω is the expectation value of the
operator Ω just as E is the expectation value of the operator H.

We must therefore ask what quantities characterize powder
that has reached a terminal state. The simplest case to consider
is of a powder inside a membrane, immersed in a liquid that
exerts a pressure P. Then the grains will have an orientation, a
position, contacts with other grains, and a distribution of forces
at these contacts. Thus there will be contacts rbR# with centroids
RbR ) (1)/(zR)Σ#rbR#, and forces fbR# giving force moments F R

) Σ#fbR#XrbR#. The set of rbR# and fbR# specify a configuration of
the powder.

When the powder is shaken these quantities change, but after
repeated shaking the grains will fill a volume V and exert a
stress Σ̂ on the boundary. It is presumed that the repeated
shaking moves the system between typical configurations in the
configuration phase space,which are subject to the constraints
on V and Σ̂. The system must then have an entropy S(V, Σ̂) and
allows the definition of temperature-like quantities ∂S/∂Σij and
∂S/∂V. Just as δ(E - H) defines the microcanonical ensemble
and gives rise to the canonical form exp [F - H/(∂E/∂S)], there
should be an analogue of H that is a volume function W, and
the microcanonical description is δ(V - W). Including the effects
of the external loading on the surface via δd(d+1)/2(VΣij - Φij)
gives

where Φij is the ijth component of a force moment tensor
function,
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e-Sδ(V - W)δ(VΣi j - Φi j) (1)
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where d is the dimension, and d(d + 1)/2 is the number of
independent components of the force moment. To make
progress, we assume for simplicity that granular systems can
be described sufficiently well by a flat measure. Passing to the
canonical distribution in the standard Gibbs fashion, as in any
standard textbook, then gives

We seek one local volume function Vq such that the total volume
is

where q is a basic volume element with which we can fill the
space occupied by the granular system. The filling (tessellation)
method, must correspond uniquely to the connectivity of the
granular system, and it has been developed for two-dimensional
systems in refs 6 and 7 and for three-dimensional systems in
refs 8 and 10. Describing the shape of a basic volume element
q by a fabric tensor, Ĉq, as defined below, the volume function
can be obtained from the trace of the tensor both in two and in
three dimensions:

In two dimensions the fabric tensor is defined as the outer
product

where ε̂ is the 2 × 2 Levi-Civita tensor and the vectors rbq and
Rbq are the diagonals of the quadrilateral q shown in Figure 1a.6,7,9

These elements have been named quadrons.7 Every grain is
made of z quadrons, where z is the grain’s number of contacts
(coordination number).

In three dimensions the tensor is

where the construction of the space-filling quadrons and the
corresponding vectors &q, rbq, and Rbq are shown in refs 8-10.

By summing over quadrons that extend between the centroid
of a specific grain and the centroids of the cells that surround
it, we get the volume associated with the grain, both in 2D and
in 3D. This is illustrated in the 2D example in Figure 1. These
grain volumes also sum up to the total volume of the system.
Therefore, at first glance, the volume function may be obtained
either as a sum over those grain volumes or over the basic
quadron volumesm, where the correct volume function depends
on the number of degrees of freedom in the system. It has been
shown in ref 7 that in 2D the number of degrees of freedom is
the same as the number of quadrons. In three-dimensional
systems of mean coordination number z ) 4 (the marginal
rigidity value for grains with high friction coefficients), the

number of degrees of freedom per grain is much smaller than
the number of quadrons.8,10 This already suggests that simply
summing in the volume function over grains is inaccurate.
Indeed, a recent analysis has shown that using the quadrons as
the basic “quasiparticles” of the statistical mechanical formalism
leads to a better insight than using grains into the role of grain
characteristics in forming the structure of a granular system.11

The choice of the identities of the basic quasiparticles in the
partition function also determines the ensemble to use. When
using quadrons as quasiparticles, one is required to use a grand
canonical ensemble. The reason is that the number of contacts
between particles may change from configuration to configu-
ration even if the number of particles does not. In isostatic states,
where the mean coordination number is fixed, the change in
the number of contacts may be negligible, being caused only
by boundary effects. In such cases, taking the system size to
infinity makes it possible to again use the canonical ensemble,
even for a system of quadrons; but in ensembles that contain
nonisostatic states, when the mean coordination number is not
constrained, only the grand canonical ensemble will do. Indeed,
it is likely that this latter case is more relevant for many
experimental set-ups because in most reported experiments the
number of particles is normally fixed, but there is little, or no,
control over the number of contacts. In particular, it is also likely
that such was the situation in the seminal experiment carried
out by the Chicago group.1 We therefore urge experimentalists

Φ̂ ) ∑
R,#

rbR# X fbR# (2)

eF-W/(∂V/∂S)-Φi j/(∂(VΣi j)/∂S) (3)

V ) ∑
q

Vq (4)

Vq ) 1
d

Tr(Ĉq) (5)

Ĉq ) ε̂ · rbq X Rbq (6)

Ĉq ) (&q × rbq) X Rbq (7)

Figure 1. The geometric construction around grain V in 2D. The vectors
rbq connect contact points anticlockwise around each grain (and
clockwise around each cell c). The vectors Rbq connect from grain
centroids to centroids of neighboring cells. (a) The quadrilateral, or
quadron, associated with grain V and cell c is shown shaded. (b) The
sum of the areas of all the quadrons around grain V constitute the area
associated with this grain. The sum of all these areas is the area of the
entire system.

Figure 2. (a) Boltzmann’s approximation of two-particle scattering
and losing memory of the collision before ever colliding again; (b)
part of a multicontact system of grains; (c) the same system of grains
slightly evolved at a later time; note the continued contacts during the
evolution of the central grains.
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to keep track of the coordination numbers; this is probably one
of the most significant microscopic parameters that determine
the state of a granular system.

Given the number of ways that the grains can occupy the
volume V and support the boundary stresses Σ̂, one can define
an entropy S(V, N, Σ̂). It is plausible that a given structural
configuration of grains can support a range of configurations
of boundary loads. Correspondingly, it is also plausible that,
given a specific macroscopic boundary stresses, there is a range
of structural configurations that are stable under it. This leads
to the idea that, in addition to the ensemble of geometric
configurations at a given volume, we should consider an
independent ensemble of the boundary force configurations that
gives rise to σ̂. Following a similar analysis as the one leading
to the concept of the compactivity, there should be a temper-
ature-like Lagrange multiplier that is associated with the force
ensemble. However, since the stress is a tensor, then so should
be that particular temperature-like quantity. This is no different
than in conventional thermal systems in the presence of angular
momentum Ω, as described above. Thus, in granular system
there are two analogues of temperature: the scalar compactivity
X ) ∂V/∂S and the (tensorial) angoricity Zij ) ∂Σ̂ij/∂S.12–14 The
latter may be simplified for systems loaded by a pure hydrostatic
pressure P, in which case the angoricity degenerates to Z0 )
∂P/∂S.

The partition function is then

where the degrees of freedom now include, in addition to the
geometric degrees of freedom discussed above, the forces on
the boundary grains; and the function Θ contains δ-functions
that ensure mechanical equilibrium. In the simplified case, when
the system is under a hydrostatic pressure, the distribution of
structural and force configurations is given by eq 9.

Indeed, it has been discovered some time ago that the distribu-
tion of the magnitudes of the intergranular forces in granular
systems has an exponential tail,15 which has been followed by
a number of microscopic models to explain it.16 However, the
above analysis suggests that this feature might be very general
and that it is simply a consequence of the canonical distribution.
Nevertheless, this issue is not entirely resolved, as we will
discuss briefly later. In particular, experiments that find devia-
tions from exponential tails24 may suggest that some of the
assumptions made here may not be valid in particular situations.

II. The Boltzmann Equation

A little addressed question in the literature has been whether
the insight from the statistical-mechanical approach can be
extended to understand dynamics of granular systems in the
same way that the traditional approach can be used to construct
the Boltzmann and the Fokker-Planck equations. In this section
we turn to discuss an attempt in this direction for granular
systems.

The classic Boltzmann equation studies dilute gases whose
dynamic evolution presumes two-body collisions. Thus, assum-
ing that our gas is described by a probability f (rb, Vb, t) of finding
a molecule at rbwith Vb at the time t, f will evolve subject to the
equation

This equation contains a scattering kernel K, representing a
particle with Vb at rb and t meeting another with Vb1 at the same rb
and t, in which case they scatter, respectively, into new velocities
ub and ub1. The last term represents the change in the distribution
function due to a change in the external forces Fb, or boundary
conditions. This equation successfully describes simple transport
such as the viscosity and the thermal conductivity of gases.
Boltzmann showed that, if the entropy of the gas is defined by
S ) -∫ f ln f, then ∂S/∂t g 0. Also, since K ensures the
conservation of energy and momentum then f(rb, Vb, t)f(rb, Vb1, t)
) f(rb, ub, t)f(rb, ub1, t) provided that f ) ne-m|Vb-Vb|2 /KBT), where n
is the density, and Vb is the mean velocity.

The question is how to extend this to granular systems? The
Boltzmann equation above has been used extensively for
granular gases, sometimes by using the extension of the equation
by Enskog to dense systems. For real dense granular systems,
this approximation fails miserably; grains are either in permanent
contact with neighbors or exchange contacts frequently. The
typical classical picture of two particles scattering off one
another (Figure 2a) is substantially different than the multicon-
tact picture in granular systems (Figures 2b-c, drawn in 2D
for simplicity).

In ḋ-dimensional static systems of frictional particles in
mechanical equilibrium, one expects at least zc ) d + 1 contacts.
Experimentally, by minimizing inertial effects when generating
granular packs, the mean number of contacts can be very close
to this value.17 However, under more violent processing
procedures, or by changing pack-generation protocols, the mean
number of contacts can be made higher. Nevertheless, for the
system to be dynamic, the mean number of contacts must drop
sufficiently close to zc, at least for hard (but not infinitely hard,
see e.g., ref 18) particles. A key point is that in dense systems
every grain is in contact most of the time, for example, the
transition from Figure 2b to 2c has the grains continually in
contact. This is true even if contacts are broken and new ones
are made, which is obviously the case in a dense flow situation.

Let us consider the simplest situation, when each particle
maintains persistently exactly four contacts during the change
in configuration. In this case, the granular analogy of eq 10
takes the form

where fi (f ′i) is the distribution of grain i before (after) the
“collision” event (we use this conventional language to make
contact with traditional analyses, although in our dense system
this is not a discrete event but rather a continuous evolution,
on top of which there are topological changes). For the diluted
gas, f depends on Vb, rb, and t. What can it depend on in a dense
granular material? Ideally, we should seek variables that either
label a single grain or a quadron. As mentioned above, the two
lead to completely different approaches. Quadrons, which are
more convenient for static ensembles, are structural constructs
whose identities are not conserved. Quadrons are created and
annilhilated as contacts are made and broken. This is no different
than systems of photons or phonons. However, this makes the

∫D(q)e-W( q)/X-Φi j( q)/Zi j Θ (q) (8)

eF-W( q)/X-P( q)/Z0 (9)

∂f
∂t

+ Vb· ∂f
∂rb + ∫K(Vb, Vb1, ub, ub1)[f (rb, Vb, t)f (rb, Vb1, t) +

Fb
m
· ∂f
∂Vb - f (rb, ub, t)f (rb, ub1, t)]d3Vb1d

3ubd3ub1 ) 0 (10)

∂f
∂t

+ ∫K[fΠi)1
4 f i - f ′Πi)1

4 f′i]d{all deg. of freedom} +

(forces) ) 0 (11)
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treatment more involved, and we will discuss this elsewhere.
Here we choose the grains as the basic particles, with the
convenience that their identities and number are conserved. We
can use the position of a grain RbR and its fabric tensor CR as
descriptors of its status of the grain relative to its neighbors.
Although this is a very approximate picture, it nevertheless
yields interesting results. The change of positions of the central
grains in Figure 2 change not only the volume associated with
them but also those associated with the grains surrounding the
cells immediately adjacent to them. The smallest number of
grains involved in a change of volume of one grains is four.
The kernel K conserves volume and stress by choice of the
ensemble that we study (see discussion below), so that for the
smallest possible change of volumes

So just as conservation of momentum and energy in con-
ventional systems,

where k runs over the particles involved in the collision, leading
to a distribution of a Gaussian form

and the conservation of volume gives

where X ) ∂V/∂S.
Likewise, the force moments resolve the stress transmission

and

where Fk is the force moment of the kth grain after the change
in configuration, and this gives the distribution

where

is the component of the temperature-like angoricity tensor,
discussed earlier.

We consider an ensemble of all possible systems with a given
volume V and boundary stresses σij. We divide this ensemble
into two subensembles. In one, which we name P-ensemble,
the boundary loads are kept constant, in the sense that the force
load on every boundary particle is fixed. This ensemble consists
of all possible structural configurations of the particles in
mechanical equilibrium whose total volume is V. The other

subensemble, named V-ensemble, consists of all the possible
realizations of boundary forces that add up to a total boundary
stress σij for a fixed particular configuration of the particles in
the system. It is significant to realize that the two ensembles
are independent. This is in contrast to the assumption made in
the literature that every combination of the load forces on the
boundary can have only one structural configuration of the
system that corresponds to it.21 To understand this, consider an
arbitrary system of grains in mechanical equilibrium under a
particular set of boundary forces. By boundary forces we mean
here the total stress on the boundary, not a configuration of
forces on each and every boundary particle. The material has
an yield stress, and let us assume that the stress state is such
that the material is not exactly on the yield surface. Therefore,
the stress on the boundary of the system can be changed without
any of the particles moving. It follows that, while the structure
of the system has not changed, the boundary stress has. This
argument shows that we can have a range of boundary stress
values for a particular given structural configurations and that
the two ensembles are independent, that is, changing one does
not necessarily result in the change of the other.

So one recovers the “Gibbs” solution from the Boltzmann
equation, but the kernel function K, which describes the
transition between states b and c in Figure 2 (which also includes
constraints on this transition), involves diabolical algebra, albeit
of a 19th century vintage. Moreover, Boltzmann’s H theorem,
that entropy defined by -∫f ln fD{q} always increases with
time, also follows for granular systems satisfying the above
conditions.22

In conventional statistical mechanics it is possible to expand,
for soft or long-range forces, in the change of momentum,
namely, in Vb- ub and Vb1 - ub1, which turns Boltzmann’s integral
equation into a differential form: the Fokker-Planck equation.
Next, we try this approach for granular media.

III. The Fokker-Planck Equation

To make progress we require a simple equation, which can
only arise from employing one-particle variables. For example,
in the classic Boltzmann equation these are the position and
momenta of any given particle. For a grain, a straightforward
position variable is RbR, but this is not a true single variable since
it depends on the contacts, which in turn depend on positions
of neighboring grains. Nevertheless, for grains of aspect ratios
around 1, the error due to changes of contacts cannot be too
large. The volume associated with grain R is determined from
the fabric tensor. This suggests that, if we restrict the discussion
for the moment to position and volume, we should consider a
distribution function that depends on the position vector Rb, the
fabric tensor Ĉ and time t, f(Rb, Ĉ, t). Since the volume can be
calculated from the fabric tensor, we write it formally in the
following as V(Ĉ).

In conventional systems, the Fokker-Planck equation can
be derived from the Boltzmann equation by considering the case
of weak scattering and expanding as mentioned above, which
leads to the equation

where in equilibrium the tensors D̂ and µ̂ are related by the
fluctuation-dissipation theorem. The Fokker-Planck equation
extends beyond equilibrium and is covered well in a paper by

VR + ∑
j

V j ) UR + ∑
j

U j (12)

∑
k

Vbk ) ∑
k

ubk and ∑
k

Vk
2 ) ∑

k

uk
2 (13)

e-
1

2
(Vb - Vb)2/kBT (14)

e-W/X (15)

F + ∑
k

Fk ) F̃ + ∑
k

F̃k (16)

e-Fi j/Zi j (17)

Zi j )
∂Fi j

∂S
(18)

∂f
∂t

+ Vb · ∂f
∂ rb + ∂

∂Vb · [D̂ · ∂

∂Vb + µ̂ · Vb] f ) 0 (19)
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Chandrasekhar. Out of equilibrium, D̂ is the diffusivity and µ̂
is the dynamic friction.

There is a wide literature on the application of the Boltzmann
equation to dilute granular systems,20 but these works are not
relevant to the systems that we are interested in here. The main
difference can be traced to the mean number of contacts between
grains, z. While in the dilute limit, this number is close to zero,
we consider only systems that are either jammed or close to
jamming. The application of the Boltzmann equation to such
systems has hardly been explored (but see ref 21). If we can
consider solely the case of packing, that is, D̂ ) 0, then f(Rb, Ĉ, t)
) e-V(Ĉ)/X, and it follows that the Fokker-Planck equation,
appropriate to the steady state, but which covers fluctuations,
is

where Λ depends on the shaking mechanism and does not affect
the form of the steady state distribution, zj is the mean
coordination number, and the last term on the left-hand side
follows from eq 5.

A simple approximation is to replace Λ by its average, leading
to Λij ) Λ(X)δijδkl, and treat W as the volume variable. This
leads to

whose solution is f ) exp(-W/X)/X. This is a simplified
calculation, and a fuller description involves nonconstant
Jacobians, which we will not go into in this presentation.

At this level we can introduce P as a variable too. Then f )
f(X, Z, W, P, t) depends on the compactivity X, the angoricity
Z, the fabric tensor P, and time t, and it must satisfy

The question one now faces is the extent of detail needed to
employ to resolve granular problems. The existence of equations
and of an H-theorem, which can be used to address and obtain
quantitative solutions to some simple problems, is satisfactory,
but it is far from sufficient to understand the richness of granular
behavior, and a range of complex issues remain unresolved.

It is worth working out a crude version in order to obtain a
solution for a particular physical systems. The compactivity X
is at its lowest (highest) when the system is as closely (loosely)
packed as possible. Thus, the Fokker-Planck equation for the
random movement of grains due to random forces acting on
them takes the form

where Fb is a random force field, whose distribution is given by
e-∫|Fb|2dt/A. This leads, traditionally, to

However, when our nonlinear terms are present, this becomes

in order that the steady state has the probability e-W/X.
Both W and X have dimensions of volume, and the funda-

mental volume in the system is that associated with a typical
grain, which we denote as a3. Thus, an approximate mean field
type of the model could be

Considering the correlation function

its rate of change from state to state is

Note that the concept of time in this expression is somewhat
artificial. It should be regarded as a parameter that quantifies
the change from configuration to configuration. The reason that
we cannot use time in the conventional sense has to do with
the lack of ergodicity, as will be discussed briefly in the
concluding section. We note that when X ) ∞ the system (which
should still be mechanically stable under some specified
mechanical loading) is at its loosest possible state (might as
well be the loose random packing under these particular
conditions). This identifies the meaning of the coefficient 2A;
it is the rate of change of Q at this state. In the state when the
compactivity is lowest, X ) 2a3, Q does not change, ∂Q/∂t )
0, corresponding to states that are sufficiently compact to freeze
any possible movement of grains. Since this is the smallest
possible compactivity, it is convenient to redefine the compac-
tivity such that it vanishes at the frozen state. Then, in terms of
the new compactivity,

This expression also shows that it is natural to measure any
volume in units of the typical volume associated with one grain.
This is of course true as long as such a value is a good
descriptor, namely, when the particle size distribution is not
heavy-tailed. Thus, rescaling all the volumes by 2a3, we have

and

∂f
∂t

- ∑
i jkl

Λi jkl( ∂

∂Ckl
+ zj

dX
δkl) f ) 0 (20)

∂

∂t
- ∂

∂W
Λ( ∂

∂W
+ 1/X) f ) 0 (21)

[ ∂

∂t
- ∂

∂W
Λ1( ∂

∂W
+ 1

X) - ∂

∂P
Λ2( ∂

∂P
+ 1

Z)] f ) 0 (22)

( ∂

∂t
+ Fb · ∂

∂ rb)φ ) 0 (23)

( ∂

∂t
- A

∂2

∂r2)G(r, r′, t, t′) ) δ(r - r′)δ(t - t′) (24)

[ ∂

∂t
- A

∂

∂r( ∂

∂r
+ 1

X
∂W
∂r )]G(r, r′, t, t′) ) δ(r - r′)δ(t - t′)

(25)

[ ∂

∂t
- A

∂

∂r( ∂

∂r
+

(r - r′)2

X )]G(r, r′, t, t′) )

δ(r - r′)δ(t - t′) (26)

Q ≡ 〈(r - r′)2〉 (27)

∂Q
∂t

) 2A(1 - 2a3

X ) (28)

∂Q
∂t

) 2A(1 - 1
X/2a3 + 1) (29)

∂Q
∂t

) 2A(1 - 1
X + 1) (30)

Q ) 2AX
X + 1

t (31)
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It is emphasized that the above is a very crude approximation,
offered here only to illustrate a way to approach the “diffusion”
problem. Nevertheless, eq 31 is quite interesting in that it offers
a way of relating the diffusion coefficient to the compactivity.
The latter has been hitherto an elusive and somewhat abstract
quantity, whereas the former is readily accessible to numerical
and experimental measurements.23 We expect that, as the
compacitivity X f 0 the system densifies and approaches a
random close packing, in which case the diffusivity should
vanish. In contrast, when the compactivity gets very high, Xf
∞, the system is connected as loosely as possible (a marginally
rigid state),17 and the diffusion coefficient is simply A. If we
take, for example, the value for the diffusion coefficient, found
by Utter and Behringer in ref 23 (read from the slope of the
tangential diffusion in their Figure 4), Q(XUB) ) 2DUB ≈ 0.02,
then the compactivity of their experiment is

IV. Open Issues

In the above we discussed only several aspects that relate to
the statistics of granular materials. There are many more facets
to the science of these systems, and there is a number of open
issues that hinder progress in the field. Arguably, the most
fundamental are the lack of full continuum theories for (i) the
manner in which granular materials transmit static stresses and
(ii) for their rheology in the dense state. Much effort is invested
in attacking these problems, and we do not presume to make
progress on them here per se. Rather, our aim in the following
is to draw attention to open issues, highlighted by the recent
developments in the statistical description presented above.

A. Nonergodicity and the “Diffusion” Process. One of the
most significant consequences of ergodicity in thermal physics
is that the statistics of an ensemble of appropriately equilibrated
systems at different states is the same as those of snapshots of
one system at different times. For example, carrying out
conventional measurement on B (.1) same-volume boxes of
air at room temperature should give the same results as carrying
out the same experiments on one of the boxes at B different
times. This is a powerful assumption that allows us to obtain
theoretical results in whatever statistics that are most amenable.
This assumption works well in the case of the air in the box
because during one measurement the air molecules undergo so
many collisions and changes of state that the limit statistics
always remain a good description. Unfortunately, because of
the sluggish dynamics of granular systems, to which thermal
fluctuations are hardly relevant, there is no such rapid transition
between states, and during realistic experimental measurement
on human time scales steady-state statistics are not easily
established. As a result, we have no access to the powerful
simplification offered by ergodicity.

Let us consider again the Chicago experiment. A volume of
grains is shaken for some time, following a particular protocol,
and then brought to rest. That experiment established that doing
this leads to a steady-state distribution of a particular quantity,
the density, in the final rest states. It is probably safe then to
assume that shaking by the same protocol many times will
always result in statistically similar final states and, therefore,
that the ensemble of final states is a typical representation of
the steady-state statistics. It is important to remember that the
statistics does not describe in any way the dynamical states
between the static final states.

Now suppose that in the experiment one inserts into the shake
system a tracer particle, whose position can be detected at any
time (and possibly even the velocity during the dynamic phase
between final states). Suppose that the experiment is repeated
many times. Let the rest states between shakes be labeled in
order of occurrence Sk, with n ) 1, 2,..., N and let us assume
that we monitor the tracer’s location at every such state, rbn.
Essentially, the integer n, which labels the sequence of states,
is the analogue of time, and it is the parameter t in eqs 28-31.

This type of experiment has been carried out under
different protocols by a number of groups, often with the
aim to understand the dynamics of the tracer and relate the
dynamics to diffusivity. However, is such a relation simple?
In thermal systems one can analyze a dynamic model and
relate it to the ensemble statistics by relying on ergodicity.
The problem with the experiments just described is that we
cannot approximate the change in the position of the tracer
from final state to final state by a kinematic approach. All
we can observe is a stroboscopic sequence of snapshots with
a black-box type of dynamics leading from one to the next.

Moreover, if the shaking is sufficiently long and effective so
as to make absolutely certain that the limiting distribution has
been reached, as presumably was the intent in the original
Chicago experiment, then there should be no correlation between
sequential positions of the tracer. This throws even more
confusion on any attempt to understand this diffusion process.

B. The Tail of the Intergranular Force Distribution:
Exponential or Gaussian? Another interesting issue concerns
the attempts to understand intergranular force distributions
directly from the statistical approach, for example, as described
above. In particular, it is still not clear whether the tail of the
force distribution is indeed exponential or not. Statistics depend
sensitively on the level of knowledge of the system. If only the
total volume and the global force moments are known, then it
is straightforward to deduce that the tail of the distribution must
be exponential.

Some experimental24 and numerical25 studies have found
deviations from an exponential form. Such observations suggest
that the assumptions used in the derivations mentioned above
may rely on inaccurate assumptions. Indeed, it has been
proposed that there may be another constraint on the system: a
conservation of the total area of a reciprocal tiling, which is a
consequence of local force balance.26 If this claim is established,
it could lead to the conclusion that the tail of the force
distribution may in fact be Gaussian.

C. Effects of Stress Solutions. The statistics may be further
affected by additional knowledge of another source: the general
knowledge of the stress solutions. Much effort in the community
has been invested in an attempt to understand stress transmission
in quenched granular systems, namely, in systems whose
structures are given. Applying external loads to these structures,
the problem addressed in these studies has been the prediction
of the stresses and forces that develop. The list of works on
this problem is far too long to cite it here.

This problem has also been the source of a fierce debate in
the community concerning the continuous stress theory that
describes such stress solutions in granular materials. Until
recently, the main candidates have been elasticity, plasto-
elasticity, and isostaticity theories. Recently, it has been sug-
gested that for the purpose of understanding stress transmission,
granular media should be regarded as two-phase composites;
one phase being isostatic and the other consisting of overcon-
nected regions, whose mean contact number per grain exceeds
the marginal rigidity value, zc. The suggestion then was that

XUB ) 1
1 - Q(∞)/0.02

(32)
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isostaticity theory applies in the former, whereas in overcon-
nected regions either elasticity or plaso-elasticity apply.9

Whichever is the correct theory, it should predict in principle
the exact general solutions for given loading data and constitu-
tive properties (i.e., elastic parameters in the case of elasticity
and structural descriptors in the case of isostaticity). Thus, if
we know the statistics of the constitutive parameters, whichever
those are, and the loading data, then we should also be able to
know the stress states and therefore also the statistics of the
stress field. Yet, there seems to be no provision for including
this knowledge in the statistical approach currently discussed
in the literature.

To illustrate the point, consider a purely isostatic granular
media. The stresses in such materials are described by isostaticity
theory, for which the constitutive properties are structural.
Specifically, they consist of the local values of a particular fabric
tensor, P̂ ) 1/2(Ĉ + ĈT), where Ĉ has been described above.
The fabric tensor is only a function of the vectors that make
the contact network (more precisely, a subset of independent
such vectors). Given a particular structure, it is then possible
to construct the fabric tensor everywhere6 and, under specified
boundary loading, solve for the stress field19 explicitly. There-
fore, if we knew the statistics of the degrees of freedom for all
possible structural configurations (which is equivalent to know-
ing the density of states in the volume ensemble) then we could
know in principle the statistics of the stress solutions.

Yet, the entropic formalism, based on the volume ensemble
(compactivity) and the boundary forces ensembles (angoricity)
does not take at all into consideration the fact that these solutions
are known.

One way to remedy this situation is by introducing constraints
on the stress field in the partition function. This, however, is a
project that has not been taken yet by anyone, and it is the
opinion of these authors that this issue requires more discussion
and work.
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