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Granular Entropy: Explicit Calculations for Planar Assemblies
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This paper proposes a new volume function for calculation of the entropy of planar granular
assemblies. This function is extracted from the antisymmetric part of a new geometric tensor and is
rigorously additive when summed over grains. It leads to the identification of a conveniently small phase
space. The utility of the volume function is demonstrated on several case studies, for which we calculate
explicitly the mean volume and the volume fluctuations.
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FIG. 1. The geometric construction around grain g. The vec-
tors ~rrlg connect contact points clockwise around each grain g
and give rise to anticlockwise loops l around each void. The
antisymmetric part is exactly Ag�̂�, where �̂� � � 0
�1

1
0� and

Alg �
1 rlgRlg cos�lg is the volume of the quadrilateral

vectors ~RRlg connect from grain centers to loop centers. A one-
grain geometric tensor is defined as ĈCg �

P
l
~RRlg ~rrlg.
It has been shown experimentally and computationally
[1,2] that jammed granular systems can be described by
statistical mechanics in appropriate circumstances, vali-
dating theoretical concepts [3,4]. The simplest approach
[3] involves the introduction of compactivity, X �
@V=@S, which plays the role of temperature in thermal
systems. To quantify X, one needs to calculate the entropy
S as a function of the volume V and therefore the volume
as a function of the position and coordination of the
N grains, i.e., a function W to complete the analogy
between thermodynamics of equilibrium and these
nonequilibrium athermal systems E! V; H ! W ;
S�E;V; N� ! S�V;N�. This Letter follows a recent analy-
sis [5] of planar assemblies in terms of loops and voids.
Each grain, g, can be characterized in terms of the Zg
grains which it is in contact with, g0, and the position of
these contact points, ~rrgg0 (see Fig. 1). For each grain we
define a center, ~rrg � �1=Zg�

PZg
g0�1 ~rrgg0 , and vectors ~rrlg

that connect the contact points. The latter vectors form
a loop around grain g that is defined to circulate in the
clockwise direction. Each vector along this loop can be
uniquely identified in terms of the grain g and a neigh-
boring void l. The vectors rlg also form polygons around
the voids, whose edges circulate in the anticlockwise
direction (see Fig. 1). To each void, we assign a center ~rrl �
�1=Zl�

PZl
l�1 ~rrlg, where the sum runs over the Zl grains

that surround void l. Finally, we define a set of vectors
~RRlg � ~rrl � ~rrg that extend from the center of grain g to the
center of a neighboring void l. This network is self-dual
to the ~rr network so that for each ~RR vector there is an ~rr
vector that intersects it.

We can now define a one-grain geometric tensor ĈCg,

Cijg �
X
l

rilgR
j
lg; (1)

where the sum runs over all the voids surrounding grain g
and i; j � x; y index Cartesian components. Each term in
this expression involves only one self-dual pair of vectors
and has a straightforward geometrical interpretation: Its
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formed by ~rrlg and ~RRlg, shown shaded in Fig. 1. Its sym-
metric part measures the deviation of this quadrilateral
from a perfect rhombus [5]. Note that this holds even
when the grain has only two contacts, in which case the
quadrilaterals degenerate into triangles. In an isostatic
assembly of rough grains hZgi � 3, giving rise to 3N
quadrilaterals altogether. The volume of the entire system
can then be written as a sum over all grains,

W ÎI �
1

2

X
g

ĈCg 	 �̂�; (2)

where ÎI is the identity matrix. It can also be recast more
conveniently as a sum over all the quadrilaterals (hence-
forth indexed by n) that the ~rr � ~RR pairs make,

W �
1

2

X
n

rnRn cos�n; (3)

where rn � j~rrlgj. This volume function (VF) is additive as
2003 The American Physical Society 114303-1



P H Y S I C A L R E V I E W L E T T E R S week ending
21 MARCH 2003VOLUME 90, NUMBER 11
required and its simple form makes it convenient for
analytical calculations.

The partition function can be written as [3]

Z �
Z
e��W �fqng��=��X�	�fqng�
dqn; (4)

where fqng is a set of internal degrees of freedom, 	�fqng�
is a probability density function (PDF) that is subject to
the constraint that appropriate grains are in contact. The
coefficient � is the analogue of Boltzmann’s constant with
�X ( � 1=� henceforth) having dimensions of volume
(L2 in two dimensions). The analogue of free energy is
the effective volume Y � � lnZ=�, the (dimensionless)
volumetric entropy is S � �2@Y=@�, and the mean vol-
ume is hVi � Y � S=�.

Substituting the VF (3) into Eq. (4), we obtain for the
partition function

Z �
Y
n

�Z 1

0
drn

Z 1

0
dRn

Z !=2

�!=2
d�n

�

� e��
P

n
rnRn cos�n=2	�frng; fRng; f�ng�: (5)

The values of the variables R, r, and � are constrained
by a minimal volume that the assembly can attain, vmin,
below which further compactification is impossible with-
out causing grains to overlap, and a maximal volume,
vmax, above which dilatation is impossible without the
loss of mechanical equilibrium and fluidization of the
assembly. Although these variables are correlated (see
below), it is instructive to first assume independent
distributions.

A. Correlation-free systems.—When the degrees of
freedom are independent, 	 can be written as a product
of PDFs of the individual variables. As a first example, let
us consider the following:

	 �
YhZgiN
n�1

$�Rn � R0�$�%n � %0�

rmax � rmin
; rmin < r< rmax:

(6)

Although simplified, this form yields the essential behav-
ior observed in experiments [1,2]. Substituting (6) in (5),
the one-grain partition function is found to be

z � Z1=N �

�
e��vmin

��v
�1� e���v�

�
Zg
; (7)

where Zg is the coordination number of the grain and the
volumes vmin, vmax, and �v are, respectively, R0%0rmin=2,
R0%0rmax=2, and R0%0�rmax � rmin�=2. The volumetric
entropy can be directly calculated from this expression
and the mean volume is

hvi � Zg

�
vmin � vmax

2
�

1

�
�

�v
2

ctgh

�
��v
4

��
; (8)

and the volume fluctuations are
114303-2
h$v2i � Zg

�
1

�2 �

�
�V

sinh���V�

�
2
�
: (9)

When �! 1��X ! 0�, we find that hvi ! Zgvmin and
h$v2i ! 0, while when �! 0��X ! 1�, hvi !
Zg��vmin � vmax�=2� ��v2=3� and h$v2i ! �v2=3. It
is interesting to note that expression (8) has the same
form as the one-dimensional result [3,6]. The current
formalism extends that result to two dimensions and
makes it possible to associate it with a particular distri-
bution of degrees of freedom.

Let us consider a more realistic case,

	 �
YhZgiN
n�1

P�rn�$�Rn � R0�C%e
���%n�%0�

2�=�2)2
%�; (10)

where )% � 1, C% is the normalization constant of the
PDF of %, and P�rn� is kept arbitrary for the moment. The
Gaussian PDF for % around %0, whose value is close to 1,
represents a narrow distribution of the angle �n around
zero and therefore small deviations from a rhombus [7].
As we argue below, P�Rn� is Gaussian-like and is nar-
rower than P�rn�, which justifies its approximation as a
delta function. Integration over all %n and Rn gives

Z �

�Z
drP�r� �r�e���)%v�

2=�2%2
0����v

�
hZgiN

; (11)

where

 �r� �
�
+
�
u			
2

p �
1� %0			
2

p
)%

�
�+

�
u			
2

p �
%min � %0			

2
p
)%

��

�
)%C%									
2=!

p ;

+ is the error function, and u � �)%=%0��v. For
u)% � 1 (high compactivity)

Z �

�Z rmax

rmin

P�r�e��-vdr
�
Zg
; (12)

where

- � 1� �e��1�%0�
2=�2)2

%� � e��%min�%0�
2=�2)2

%��
C%)2

%

%0
:

For example, assuming that P�r� is uniform gives that the
mean volume per grain is

hVi � Zg-
�
vmax � vmin

2
�

1

�-
� �v ctgh��-�v�

�
;

(13)

and the volume fluctuations are

h$v2i � Zg

�
1

�2 �

�
-�V

sinh�-��V�

�
2
�
: (14)

The analysis of these expressions as �! 0;1 is straight-
forward and gives the same results as for the previous
case with �v replaced by -�v. Similarly, it is straight-
forward to evaluate these quantities for low compactivity.

The expressions for the volume fluctuations can be now
related to response functions and diffusion processes in
114303-2
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granular systems. It is unclear at this stage how large the
error is that is introduced by the assumption of indepen-
dence of the variables. One advantage of the VF proposed
here is that it makes it possible to elucidate this issue.

B. Correlated systems.—To go beyond the assumption
of independence, the key observation is that correlations
arise from two sources: (i) relations between the vectors ~rr,
and (ii) the self-duality of the r and R networks. The
former can be traced to loops. Whenever M ~rrlg vectors
close a loop, their sum vanishes and one of them (two
degrees of freedom) can be expressed in terms of the
other M� 1 vectors. This introduces two $ functions
into the Jacobian, reducing the phase space dimension-
ality by two. The smallest such loops occur around the
grains,

PZg
l�1 ~rrlg � 0. When these are independent, each

such loop contributed to the Jacobian a term of the formQZg
i�1 P�~rri�. The correlations force a modification of this

term to �
QZg�1
i�1 P�~rri��$�~rrn �

PZg�1
i�1 ~rri�. Note that the

value of Zg is distributed throughout the system, giving
rise to a corresponding distribution of such terms in the
partition function. Voids are also surrounded by loops of
~rr vectors (e.g., void l in Fig. 1), each further reducing the
phase space dimensionality by two. Grain and void loops
are the only irreducible loops in the system (namely, all
other loops can be decomposed into these) and therefore
only they give rise to correlations of the first type. This
observation has an interesting implication: An isostatic
system ofN grains has 3N ~rr vectors. TheN granular loops
and the N=2 void loops yield 3N=2 of these dependent on
the rest. Namely, only half the ~rr vectors are independent,
giving 3N degrees of freedom.

Turning to the second type of correlations, recall that
~RRlg extends from the centroid of grain g, 1

Zg

PZg�1

l0�1 �Zg�

l0�~rrl0g, to that of loop l, 1
Zl

PZl�1
g0�1 �Zl � g0�~rrlg0 . Therefore, it

can be expressed as a linear combination of the vectors
forming the g and l loops, ~RRlg �

PZl�Zg�2
k�1 an ~rrn, and is

uniquely defined in terms of the ~rr network. On average, an
~RR vector depends on hZg � Zl � 2i � 7 ~rr vectors and,
since there are two grains to a void, then hRi �

			
2

p
hri.

It follows that P�R� can be safely approximated by a
Gaussian around this value. The dependence of the R
variables on the r further means that the % variables
can also be expressed in terms of these because %n �																								
1� ~RRn 	 ~rrn

q
. In fact, %n depends on average on eight r

variables and therefore P�%n� can also be approximated as
a Gaussian. Combining all the above, the VF can be
written as

W �
1

2

X3N=2
n;m�1

anmrxnr
y
m: (15)

The coefficients 0< anm < 1 are rational and form a
sparse matrix of zeros on the diagonal and, on average,
seven finite elements in each row. Although appealing,
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this quadratic form is useful only with particular forms of
P�frg� and even then it requires knowledge of the statistics
of anm. Its main disadvantage is in mixing the basic
quadrilateral volume units and so losing the clear geo-
metrical interpretation of Eq. (3).

Although the correlations reduce the phase space di-
mensionality to 3N, it is difficult to take them all explic-
itly into consideration. To make progress, we consider all
the original 9N variables but include the lowest order
correlations— those coming from the intragranular
loops, which are the smallest. The justification for this
approximation is that since the R and % variables depend
on several r degrees of freedom then they are more
narrowly distributed and so can be considered as back-
ground fluctuations. We believe that this approximation
captures the correct physics in granular assemblies.

To illustrate the effects of the intragranular loops,
consider a triply coordinated circular grain of diameter
D. The three contacts on the circumference form a tri-
angle of vectors ~rrlg, and we wish to know the probability
P�r1; r2; r3� that the lengths of its sides lie inside �r1; r1 �
dr1�, �r2; r2 � dr2�, and �r3; r3 � dr3�. The PDF of one of
the sides falling between r and r� dr is

P�x � r=D� � 1=�!
														
1� x2

p
�: (16)

The first two sides can be chosen independently, but once
these are in place, the third side is determined by

x23 � f2�x1; x2�

� 2x1x2
																																		
�1� x21��1� x22�

q
� �x21 � x22� � 2x21x

2
2; (17)

and therefore

P�x1; x2; x3� �
$�x3 � f�x1; x2��

!2
																																		
�1� x21��1� x22�

q : (18)

Although this analysis can be extended to Zg > 3 and to
noncircular grains, we do not give it here. We next dem-
onstrate the effect of intragranular correlations on the
effective volume.

Consider a large ensemble of N randomly assembled
monodisperse circular grains, each contacting exactly
three neighbors. Ignoring void loop correlations makes
the grains effectively independent but not the quadrilat-
erals. We take a Gaussian form for P�%� and practically a
delta function for R. The one-grain partition function
(z � Z1=N) is then

z �
Z Y3

n�1

�e��rnRn%n=2P�Rn�P�%n�drndRnd%n�

� P�r1�P�r2�$�r3 � f�r1; r2��; (19)

where the lengths rn are measured in units of the grain
diameter D. Integrating over the R and % variables yields
114303-3
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FIG. 2 (color online). The volume (left axis) and density
(right axis) of a trivalent granular assembly of monodisperse
circular grains. The moduli of the intragranular vectors con-
necting the contact points are taken to be correlated in the
calculation. The PDFs of % and R are, respectively, Gaussian
and a $ function at the periodic lattice value R0 � 2D=

			
3

p
. Two

density plots are presented: one assuming independent r vari-
ables (squares) and the other taking the intragranular correla-
tions into account (+). For X > X0 � 0:265, the correlations
compactify the system while below this value they lead to an
opposite effect for the reason discussed in the text. A signifi-
cant feature is that the difference between the two plots is quite
small. The densities of the two calculations differ only by 0.009
(�2%) at �X � 5 and by 0.021 at �X � 0:04 (�4%).
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z �
Z
dr1dr2P�r1�P�r2� �r1� �r2� �f�r1; r2��

� exp

�
�2R2

0)
2
%�r

2
1 � r22 � f2�

8

�
�R0%0�r1 � r2 � f�

2

�
: (20)

Substituting from (18), we can now compute Y and from
it the mean volume and its fluctuations. The mean volume
is plotted in Fig. 2 as a function of �X. The asymptotic
value as X ! 1 is the average of the close and loose
random packings, while the value at X ! 0 is the close
random packing volume. In terms of grain number den-
sity, these are 0.473 and 0.537, respectively.

We can now assess the assumption of independence.
Using form (18) for P�r� of all three quadrilaterals, we
also plot in Fig. 2 the density of the system with and
without correlations. It can be observed that the correla-
tions reduce the density of the system at high compactiv-
ity, but increase it compared to the correlation-free
system at low compactivity. The crossover is at X0 �
0:265. This is expected because the sides cannot all
assume simultaneously either rmax or rmin. This constrains
the high compactivity limit from overexpanding and the
low compactivity regime from overshrinking. In spite of
this fundamental difference, it is rather surprising how
close the densities of the two systems are over the entire
114303-4
range. The densities of the correlated and uncorrelated
systems in the high compactivity limit are, respectively,
0.473 and 0.464 (1:9% difference), while at the low
compactivity limit (�X � 0:04) the values are 0.537 and
0.558 (3:8% difference). This suggests that simple models
that do not take the correlations into account may prove
sufficiently accurate for various purposes.

In conclusion, we have proposed a new VF for planar
granular assemblies that is exactly additive over grains.
Nevertheless, we have identified the quadrilaterals, rather
than the grains, as the basic units of the system because it
is their volumes that cover the entire volume. A sum over
grain volumes without involving the quadrilaterals has
the disadvantage of requiring an assumption on approxi-
mate grain volume. We point out that the VF proposed
here applies to any assembly in mechanical equilibrium,
not only to isostatic ones. We have found that the relevant
phase space is of relatively small dimensionality and
identified the sources of geometrical correlations in the
system. We have calculated the effective volume and
volume fluctuations of several model assemblies both
with and without correlations. The identification of quad-
rilaterals as the basic building blocks is relevant to mod-
eling. For example, a two-volume model for grains, v1
and v2 with occurrence probabilities p1 and p2, gives a
mean volume of [6]

hVgi � N
�
v1 � v2

2
� �v tanh

�
��v� ln

						
p1

p2

r ��
: (21)

Applying the same model to quadrilaterals gives a similar
expression, but it corresponds to a wider distribution of
grain volumes both because a grain has Zg quadrilaterals
and because Zg itself is distributed. Thus, quadrilaterals
as basic units yield more realistic models without invest-
ment of extra effort.
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