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We study the Lévy dustson the line on two accounts:the fluctuationsaroundthe averagepower law
that characterizeshe mass-radiuselation for self-similar fractals, and the statisticsof the intervals be-
tweenstridesalongthe logarithmic axis (their tail distributionis relatedto the dust'sfractal dimension. The
Lévy dustsare suggestedas a yardstick of neutral lacunarity, againstwhich non-neutrallacunarity can be
measureabjectively.A notion of perceiveddimensionis introduced. We concludewith an applicationof the
Mittag-Leffler statisticsto a nonlinearelectricalnetwork.[$1063-651X%97)10202-1
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. INTRODUCTION TO CHARACTERIZATION
OF FRACTALS BEYOND THE DIMENSION:
LACUNARITY, NEUTRAL LACUNARITY
'ASDEFINED BY ANTIPODAL INDEPENDENCE,
LEVY DUSTS, AND THEIR SAMPLING PROPERTIES

This paperusesprobability theoryto definea neutralfrac-
tal lacunarityandsuggests way to measurdacunaritywhen
it is not neutral. Critical percolationclusters,for example,
areof neutrallacunarityandwill be studiedelsewhereSev-
eralpapergdiscussedacunarityandits concretauses But the
topic s still newandunfamiliar, thereforewe shall beginby
addressinghe fundamentaissues.

Visual lacunarity. Considerthe Cantor dusts stackedin
Fig. 1 reproducedrom [1]. Thesedustssharethe samefrac-
tal dimension,D=1/2, but differ in an obvious manner.
Thoseat the stack’s bottom have small holes, can be de-
scribedasfine grained,and mimic filled-in intervals.In Ref.
[2] they aretermedlow lacunarity. Thoseat the stack’stop
have big holes, can be describedas coarsegrained, and
mimic two dots;they aretermedhigh lacunarity. This dem-
onstrates generalpoint; a setwith a givenfractaldimension
D can be madeto mimic a broad rangeof quite different
textures pointingto the fact thatthe fractal dimensionis not
enoughto uniquely characterizdractals.

Thereis a strongneedto measurequantitativelythe dif-
ferencedn lacunaritybetweentexturesin self-similar physi-
cal structures suchas galaxy distributions,spin domainsin
magneticsystems diffusion-limited aggregatesgnicrostruc-
turesof porousand compositematerials,and so on. Fourier
analysisand spectralcharacterizatioronly give the fractal
dimension. It would be convenientif the quantitative la-
cunarityto quantify thesedifferenceswould takethe value 0
in thosecasesvherethe lacunaritycansensiblybe saidto be
“neutral,” i.e., right on the boundarybetweerhigh andlow.

The main goal of this papercannow be sketchedA frac-
tal of non-neutrallacunarity seemsto the eye to have an
apparentfractal dimensiondifferent from the actual value.
Therefore,we shall investigatefractal dustson the line and
definefor them a quantity that will be denotedby Dp and
called “perceived dimension.” This is not a fractal dimen-
sion, but the eye trainedon Lévy dustsmay perceiveit as
one. The perceiveddimensioncan be higher or lower than
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the fractal dimension,dependingon lacunarity. Dimensions
mustnot be multiplied beyondnecessity(and they haveal-
ready multiplied beyondcomfort), but necessityhas arisen
again.In effect,Dp measuretiow low or high agivenfractal
sits on a stacksuchasthatillustratedin Fig. 1.

Theseissuesraise a few difficulties: (a) The notion of
lacunarityturns out to be many sided,giving rise to several
distinct definitions. As a matterof fact, this paperwill dis-
cusstwo versionsof a conceptone may call fluctuation la-
cunarity. (b) Someof thosedefinitions (but not D) fail to
define a neutralstate.(c) All definitions are statistical.For
examplewhile the Cantordustsillustratedin Fig. 1 aregen-
eratedby a deterministicmechanismtypical empirical stud-
ies may involve, insteadof a full dustin (0,1), a piececon-
tainedbetweentwo pointsrandomlyselectedn time; sucha
pieceis a randomset. In the randomcontext,eachmeasure
of lacunarityis a function of a sampleof observationsThat
is, even when the true lacunarity is neutral, with typical
valueO, thevalueactuallymeasurean a sampleis arandom
variable.Hence the differencebetweenrmeasurementade
on samplesof two distinct fractalswill reflectnot only the
difference betweentrue lacunarities,but also a sampling
error.
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FIG. 1. A stack of Cantor sets of equal dimensionD=1/2,
whoselacunaritychangedrom very low at the bottomto very high
at the top of the stack.
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The mass-radius relation, its prefactor F, the prefactor’s
variability factor, and a measure of lacunarity. Given a ball
of radiusR in E dimensionswhich enclosesa self-similar
fractal structure thetotal massimeasurgM (R) enclosedy
the ball is known[2] to takethe form

M(R)=FRP (1.1

or

In M(R)=InF+D In R.

The exponentD is the fractal dimensionandis smallerthan
the embeddingEuclideandimensionE. In the caseof the
Lévy dust,the prefactorF is a randomvariableindependent
of R. For both F andIn F, we obtainthe expectationyari-
ance,and other statisticalproperties. Operatively,the distri-
bution of the prefactorF can be constructedby moving the
origin of a ball of radiusR throughoutthe structure measur-
ing the massenclosedby the ball, and repeatingthe proce-
durefor manyvaluesof R. The existenceof awell-definedF
independentof R presupposeghat the structureis self-
similar with respecto all reductionratiosr, andhencecalls
for descriptionasa randomfractal. A systematidractal such
as the Cantordustis self-similar with respectto reduction
ratiosr thatfall into a geometricsequencdsuchas4 "
Fig. 1); it follows that F is a noisy function that is roughly
periodicwith periodin R [3].

The prefactorF, or evenits expectationreceivedfar less
attentionin the literaturethan the scalingexponentD. The
importanceof F residesin its intimate connectionto the
conceptof lacunarity. To understandvhy, note that the en-
sembleaveragerelation (1.1), (M(R))=(F)R", is in effect
the density-densitycorrelationfunction of the structuremul-
tiplied by RE. In translationally invariant systems, the
density-densitycorrelationfunction givesinformationon the
massfluctuations,and henceon texture,but dueto the dila-
tion symmetryof fractals,this function only yields the quan-
tity F andthe scalingexponentof the averagemass.Since,
aswe havealreadynoted, a fractal structurecannotbe de-
scribedonly by its dimension,one signaturebeyondsimple
scalingis the statisticalvariability (to be definedbelow) of
M(R) for fixed R. Intuitively, this variability oughtto be
smallerin a fine-grainedstructurethanin a coarse-grained
one.Hence,a possiblesignatureof lacunarityis the ratio of
thevarianceto the squareof the expectationasmeasuredor
eitherF or In F.

The Levy dust as a yardstick of neutral lacunarity; antipo-
dal correlation. Theleaststructuredor “most relaxed” of all
point distributions on the line is the Lévy dust, which is
generatedisthe setof positionsof anincreasing_évy flight.
The successivestepsin a flight follow the distribution
P{U=u}=u"P, and are independentTherefore,the Lévy
dustL hasthe propertythat,if the origin Q2 belongsto L, the
portionsof the dustto the right andthe left of () are statis-
tically independentThoseoppositedirectionsaredenotedy
theterm “antipodal.” Oneof us[2] observedhata positive
correlationbetweerthosehalvesis perceivedaslow lacunar-
ity anda negativecorrelationis perceivedashigh lacunarity.
It follows that the Lévy dustis a useful standardof neutral
lacunarity. It wasshown[4] that linear cutsthroughcritical
percolationandlsing clustersare of neutrallacunaritiesSee
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also [5]. This motivated us to investigatethe Levy dusts
deeperfrom viewpointsthat did not previously seemcom-
pelling. The generalizationto fractals embeddedn higher
dimensionds not straightforwardandwill be presenteclse-
where.

This paperis constructedsfollows. Sectionll introduces
the Lévy flight processand the resultantLévy dust. The re-
ducedmassM (R)R P for the Lévy dustis a Feller-Mittag-
Leffler (FML) randomvariableandwe discussits properties
and plot its distribution (apparentlyfor the first time). Sec-
tion Il usesthe ratio of varianceto squaredexpectationof
the FML randomvariableto definethe perceiveddimension
Dp. We mention in Sec. lll generalizationsconcerning
higher cumulantsof the FML distribution. SectionlV ad-
dresseshe distributionof thelogarithmof the Feller-Mittag-
Leffler variable,and discussests propertiesandits bilateral
Laplace transform. We show how its Fourier transform
yields an accuratemeasureof the fractal dimension.Section
V analyzeghe distributionof strideson theln R axis, which
is closely relatedto the Lévy-flight processWe show that
this distributionpossessearich andinstructivebehaviorand
we presentnumericalresultsin supportof our predictions.
Section VI demonstrateghe applicability of the Mittag-
Leffler statisticsto a nonlinearelectrical network. We con-
clude in Sec. VIl by discussingsome implications of our
resultsand possiblenew directions.

Il. THE LEVY FLIGHT AND THE
FELLER-MITTAG-LEFFLER RANDOM
VARIABLES AND PROCESSES

In the following, we shall adoptthe probabilists’ nota-
tions, denotingrandomvariablesby upper-casdetters and
their valuesby the correspondindower-casdetter. For 0<D
<1, atruncated_évy flight processon theline is asfollows
[1]: Start with a uniform distribution in the range (e,1),
wheree—0", andchoosean arrayof M orderednumbersy;
(i=1,2,...,M). Fromthis arrayform the following sequence
of numbersV,,:

m
=> U™ (m=12..M), 0<D<1. (2.1
=1

The collection of the points V,,>0 on the positive half line
constitutesa truncatedLévy dust. It is known that, in the
limit e—0, the numberof thesepoints within a distanceR
from the origin satisfiesEq. (1.1).

The FML distribution. It is known [6] that the random
prefactorF follows the Mittag-Leffler distribution, whose
probability densityis

1 1)kt

uo(f)==3, ((k £y SITKD)I(D)f* 2,

m k=1

0<f<oo, (2.2
The Mittag-Leffler distribution was first observedby Will
Feller,who chosethis namebecausédhe generatingunction
of up(f ) is the Mittag-Leffler function:
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FIG. 2. The variability factor ®(D) for the Lévy flight (solid
line). The dotted (dash-dottejlline is an exampleof systemswith
perceiveddimensionsDp higher (lower) than D and hencewith
lacunaritywhich is below (above neutral.

o (=pk

Cltluo)= [ e Muoth =3, gy 29

We hopethat our denotationherewill restoreto W. Feller
somecredit that he deservedout chosenot to claim. A few
propertiesof this distribution were known [7]: for D—0,
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wp(f)—exp(—f); for D=1/2, up(f ) is a half-Gaussian;

and,for D—1, up(f ) approacheshe & function. The form
of (2.3 indicatesthat the integerm-th momentsof up(f )
are

The FML random processes. The reduced mass
F=M(R)R P canbe considereda function of R. Its mar-
ginal distribution for given R is a FML distribution, whose
samplefunctionsin time to our knowledgehave not been
investigateduntil now. We think that they deserveto be
calledFML randomfunctions.

1. LACUNARITY AS DEFINED THROUGH THE MASS
VARIABILITY, AND THE CONCEPT
OF "“PERCEIVED DIMENSION"

The variability factor. A possiblesecond-ordecharacter-
ization of lacunarityis the variability factor[8]

(F=(N? ()

®(D)= RS 1. (3.1
From Eq. (2.4) we find
_ 2I'*(1+D)
P(O)=Taip)

which is plottedin Fig. 2 againstD.
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The variability factor is independendf R dueto the self-
similarity of the Lévy dust,andis relatedto the fact thatthe
jumpsof the Lévy flight haveaninfinite expectationFor the
stopoversf a flight in which the jumpshavea finite expec-
tation, the variability factor ® dependsn R, andtendsto O
asR—o, whichis arestatemenof thelaw of largenumbers.
(Forexamplejn a Poissorprocessthe variability factorvar-
iesasR 1) For the Lévy dust,the factor &(D) is indepen-
dentof R and decreasesnonotonicallywith the fractal di-
mensionD. For example,®(D—0)—1 for ®(D =1/2)=x/2
—1=0.5708,and ®(D—1)—0.

It wasto be expectedhat, for the Levy dust,the value of
this lacunarityshoulddependstrongly on the fractal dimen-
sion. Indeed, a Lévy dust near D=1 is almost uniformly
distributed and the variability factor of its mass, M(R),
shouldbe small. Onthe otherhand,a Levy dustwith D<1 is
extremelyunevenandthe variability factor of its M(R) has
to be very large. The graphof ®(D) confirmsthatfor Lévy
dustslacunarity increasesas D goesfrom 1 to 0. It also
showsthat ®(D) is very sensitiveto D nearD=1, where
®’(1)=-1, and not at all sensitive near D=0, where
®'(0)=0. Therefore,the techniquesto be advancedbelow
are better suited for valuesof D that are not very small
comparedo 1.

The perceived dimension. Let us considemow the Cantor
stackshownin Fig. 1. Whenthe lacunarityis far lower than
neutral,the setmimics a filled-in interval. Thatis, it mimics
a misleadingly higher value of D. This in turn meansthat
one expectsthe variability factor to be smallerthanthe true
value of ®(D).

The function ®(D) suggestghen a perspicuousvay to
measurdacunarity. Invert the function ®(D) for the Lévy
dust,Eq. (3.1, to obtaina function D y(®), wherethe index
N refersto the neutralcharacterof the Lévy dust.Fromthe
measurechistogramof F for any given real systemobtain
the measuredralue of ®. Now insertthe measured/alue of
® into the function Dy(®). Theresultcanbe calleda (visu-
ally) “perceiveddimension,” which we denoteby D, . The
threepossibilitiesthat ariseareinterpretedasfollows: When
Dp=D, the lacunarityis definedas neutral;when Dp>D,
the lacunarity is definedbelow neutral; when Dp<D, the
lacunarityis definedaboveneutral.

Thus, one can take the value of D, asa measureof la-
cunarity. For example,supposehatin Fig. 2 the dottedand
dash-dottedinesrepresent setof measurementsf the sys-
tems’ variability factors.The entiredotted(dash-dottegline
shows a perceiveddimensionhigher (lower) than D and
thereforeits lacunarityis below (above neutral. Note that
this measureprovidesa different scalefor eachtrue D, a
complicationthat may be avoidedby taking the ratio of per-
ceivedto true dimension,Dp/D [or perhapsDp/(1—D)],
but we havenot yet exploredthis idea.

Higher order variability factors. Once again, the main
significanceof ®(D) in measurementsf self-similar ran-
domdatais thatit helpsdistinguishdifferentfractalswith the
same or similar, valuesof D but differentstructure(lacunar-
ity). One cangeneralizethe aboveanalysisto ordershigher
than secondand definethe following families of quantities,

Ck(D)
[C.(D)T*

S«(D) (3.2
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TABLE I. Valuesof S, for k=2,3,4atD—0, 1/2, 1.

D $,=®(D) S3 Sy
D—0 1 2 6
D=1/2 m/2—1 2— I 2m—6
D—1 0 0 0

In this expressionC,(D) is the kth cumulantof the FML
distribution. Clearly, $,(D)=®(D). It is straightforwardto
showthat $, (D) is a decreasingunction of D for all k. For
examplefor D—0, 1/2 and1 andk=2, 3, and4 we find the
values given in Table I. For all k, in the limit D—O0,
S—(k—1)! andwhenD—1, $,—0.

IV. THE LOGARITHMIC MITTAG-LEFFLER
DISTRIBUTION

The traditionalway to analyzefractal structureds to plot
In m againstn V,,, which yieldsthe fractaldimensionasthe
averageslopeof the resultantline. After this linear line has
been subtracted,the plot of InF as function of InR re-
semblesa noisy time series Figure 3 showsa typical plot of
suchaprocesswith D =0.2.1t is thereforenaturalto call In F
the logarithmic Mittag-Leffler (LML ) randomvariable.

Considerthe randomvariablesY andR definedthrough

R=1In R,
Y=InF=InM-D InR.

Using Eq. (2.2), the probability densityof Y is

in(M)

25

In(R)

FIG. 3. A typical plot of the masslogarithmvs the radiusloga-
rithm (both naturallogarithmg. The fractaldimensionin this plot is
D=0.2.

FIG. 4. The logarithmic Mittag-Leffler probability density
againstlog,(x) for D=0.1-0.9 in stepsof 0.1. The highestpeak
belongsto the curvewith D=0.1.

df
9o(y)=ro(f=€) 5o

f=ev
e« (et
=;k21 (k_—l)!sm(ka)F(kD), 4.1

where —oo<y <o,

Numerical evaluation and unimodality. Figure 4 plots
g(y) for valuesof D thatrangefrom D=0.1to D=0.9in
stepsof 0.1. Theseplots are obtainedby numericalevalua-
tion of the sumin Eq. (4.1), cut off at a value k., beyond
which the remainderof the sumcanbe neglected.

For all D, gp(y=«)=0. Since gp(y) is not constant,
thereexistsat leastoney* for which g(y*) is a maximum,
i.e., gp(yY*)=gp(y) for all y. It canbe shownvery easily
that for D—1, 1/2, y* is unique,so that g(y) is unimodal.
Indeed,by plotting g(y) for many valuesof D between0
andl (Fig. 4) we find that this resultholdsfor all D in this
range.

The bilateral Laplace transform and related analytic re-
sults. The bilateral Laplacetransformof gp(y) is

x {1+t
E(tlgo)=fxe'yga(y)dy=ﬁ

(4.2

for anypositiveandintegervalueof t. Theright-handsideof

Eg. (4.2) is obtainedby substitutingthe form (4.1) in the
integral and changingvariablesto f=eY. The proof thatthe
resulting integral is exactly the tth moment Eq. (2.4) is

straightforwardand usesEgs. (2.2) and (2.4). For complex
valuest= #+ir (providedthat the integral for the moment
existy9, we usethe generalizedorm of the gammafunction
[9], andrelation (4.2) becomes

I'(1+6+ir)

rar@riopy 49

L(6+iT|g)=

which for =0 is the bilateral Fourier transform.Using [9],
the spectralintensityis

1 sinh(#w7D)

|F(71@)P=+

D sinh(m7) “49

Relation (4.4) is easyto check for the three valuesof D
where the FML is known explicitly. Integrating over the
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(i7)th momentA(7g) =/ §f "up(f )df immediatelyyields
Eq. (4.4) for thesethreevalues.

Direct relevance of relation (4.4) to practical measure-
ments of D. For small valuesof 7 we find, by expanding
relation (4.4),

2
5 2 ~exp{— 727%(1—D?)/6}.

(4.5

| F(71g)>~1—-(1-D)?

Wheneverr is not very small, suchthat exp(2=7D) is not
very closeto 1, we obtain

In(|A(7|@) ) ~cons[ — w(1—D) 7]. (4.6)

Thus, plotting the intensity |7(7g)|> semilogarithmicallyit
should be possibleto observea constantslope for 7>1/
(27D), which extendsover a wide rangeof valuesof 7. For
small valuesof 7 (> 6/ m(1—D)]), this plot shouldbe de-
creasingparabolically. It follows that relations (4.6) and
(4.7) allow oneto crossdeterminethe dimensionof the sys-
tem.Givena systemwhosefractaldimensionis unknown,all
we needto do is constructthe histogramof the randomvari-
able Y andthen Fouriertransformit. Plotting the logarithm
of the absolutesquare(the intensity) of the Fourier coeffi-
cientasa function of 7 shouldgive, awayfrom the origin, a
straightline of slope#(1—D) asin Eq. (4.6). This method
can be usedto checkon the traditional methodof plotting
Inm versusin(R,). Furthermore,this techniquemay be
more accuratefor systemsthat are not large enoughfor the
usual mass averaging. Thereforeits applicability is more
promisingat low fractal dimensiongD <1). We will pursue
this issuein Sec.V.

V. THE DISTRIBUTION OF THE RELATIVE JUMPS
IN THE RADIUS

Self-similarity concernsdilation or reduction,which are
multiplicative operations. Taking logarithms transforms
them into translations.A particular application of such a
transformatiorto logarithmiccoordinatess discussedn [3].
For example takethe standardCantorduston[0,1], extrapo-
late it to the right by successiveexpansionf ratio 3, and
look at it in the coordinater=In . When the dust s infi-
nitely interpolated,its imagein In(time) is a periodic point
procesn the wholeline, in which large gapsof lengthln 2
alternatewith deformedCantordustsof lengthin(3/2). Now,
considera truncateddust, i.e., one interpolateddown to a
smallest“atom,” but no further. Its imagein In(time) is a
processon the half-line to the right of the origin. The suc-
cessivelarge gapsare unchangedby the imposition of an
inner cutoff, and the successivepieces betweenthe gaps
build up asone movesright to aninfinitely interpolatedde-
formed Cantordust.In thatlimit, the distributionof the gap
lengths convergeto a well-defined limit. For small gap
lengthsthis limit is Pr(v>u)~u"P.

Let us return to our randomLévy dust. Once again, in
logarithmic coordinateghe dusttransformsinto a stationary
randompoint processin otherwords,the quantity
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ufl/D

2 —-1D

pm=Vim—Vm_1=In| 1+ = (5.1)

hasa limit distributionindependenbf m. We reiteratethat
the FML randomprocessM(R)R™° canbe viewedasfunc-
tion of In R andit becomes Feller-Mittag-Lefflerprocessn
this variable. The randomvariable p,, is the differencebe-
tweenthe mth andthe (m— 1)th stepson the logarithmicaxis
on which the Lévy dust was mapped.In practice, as we
know, the valuesof u; arepickedfrom a uniform probability
densitythatrangesfrom u,;,=€>0 to u,,,,=1. A lower cut-
off is required by both physics and computationalcon-
straints. We stressthat the results are independentof e,
which simply facilitatesthe calculations.Thus the probabil-
ity densityof u; is

1U/(1—e),
sy={g ¢

€<ui<1

otherwise. (5.2

We now seek the probability density of _the variable
vm=€xppn). The probability density of v, P(v), can be
found through

Plm= [

u- 1P
1+ ﬁ_m T —1D)

E[f(u du,) [vm

_ D mf;l/o{l_[ o ©* e,
l1-€ 1 = :
m-1 1—(D+1)
X|(rm=1) 2, o (5.3

Using the normalizationconditionand somealgebrawe find
that

eD

E(Vnm)Z A=) (m=-1)° (Vp—1)" (D

(5.4)

The next stepis to obtainthe probability densityof p,:

d
Bv)

P(pm) = dp
m

V= X )

B eD ePm
(1= (m-1)P (erm—1)P* 1

(5.9

wherep,, is definedover the interval
(n[1+ €*/(m—1)],In[1+ e YP/(m—1)]),

which tendsto (0,) as e—0. This probability density de-
creasesnonotonicallywith p,, from its maximalvalue of

D
Pmax:m [(m— 1)5_1/D+ 1]

(5.6
at the lowestvalue of p,. Moreover,P is a strictly convex
function of its argument;a propertythat can be verified by
consideringhe signsof successivelerivativesof P: In terms
of t=e’m—1, Eq. (5.5 becomes



P()=Pyt P+t DY), Prm— D (57

0 T 1) (m-1)P '
The sign of the kth derivative,d®P(p,,)/dpX,, is the same
as that of d¥P(t)/dt*=(—1)*. This changeof sign with
successivaifferentiationsshowsthat P(p,,) is strictly con-
Vex.

In the plot of the logarithm of P(p,) as a function of
ta=explpn) —1, it shouldbe possibleto detectthe combina-
tion of the two slopes—D and —D —1 in expression5.7).
At low valuesof t, (i.e., p, very closeto zerg the mean
slopeis —D —1 andit crosseoverto —D for largevaluesof
t., . This distributionplaysanimportantrole in many physi-
cal systemsandthe tail of the cumulativedistribution of the
variablep,, G(p), is

671~ [ Plpwtpm=1—oz [(5—1) P(m—1)—c.
’ (5.9

Sincethe behavioris not purely exponentiain In’p there
appears crossovewhenthefirst termin the curly brackets
becomescomparableto e. This can be understoodby in-
spectingrelation (5.8): as D decreaseghe first termin the
curly bracketsdecreasesndfor a given value of € the two
termsbecomecomparableor largervaluesof p.

VI. THE FML IN A SYSTEM OF NONLINEAR VARISTORS

The Mittag-Leffler statisticshavemany interestingappli-
cationsin physicalsystemsmostof which havenot yet been
recognizedor addressedHere we give an illustrative ex-
ample of one suchapplication:the occurrenceof the FML
distributionin a conductingsystemof varistors.A varistoris
a nonlinearresistorthat follows a current-voltagecharacter-
istic of the form [10]

V«: V«Ia

=Tty 6

whereV; and|; are, respectively the voltagedrop and the
currentpertainingto the jth varistorr; is a coefficient,which
we termresistancelueto its beingparallelto the usuallinear
resistance put whose units are (/A® L. The parametera
(which is usually temperaturedependentis presumedcon-
stantfor all the varistorsin the structure.We shall limit our
discussiorto the sublinearregime 0<a<1. We considerm
varistorsconnectedn parallelbetweertwo nodesA andB as
in Fig. 5,

Vas=Rasl s - 6.2
Thequestionthatwe addresss how R,y is distributed.For a
givenrealizationof thelocal variablesr;, thevalueof R g is
given exactly by

—a

(6.3

m
j=1

The direct equivalencebetweenrelations(6.3) and (2.1) is
immediatelyapparentvia the transformations

1/

a—D, Fie Uj, Vm—Rag
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B

FIG. 5. A varistorselectric circuit realizationof Mittag-Leffler
variablesand statistics.

Substitutingtheseinto Eq. (1.1) yields
Rag=F/m, (6.4

and it follows that Rag is a FML random variable with
wm(f) [seeEq. (2.2)]. For examplethe averageof R,g is

Similarly, the secondmomentof this distributionis

(3R = (Ri)—(Rag) = e o
AB AB ABS T ml(1+2) mT?(1+a)’
(6.6)

and so on. Thus the aboveanalysisdirectly appliesto this
systemandone canlearnaboutthe statisticsof the nonlinear
conductingsystemby adaptingrelationsfrom the Lévy dust
statistics.

It shouldbe mentionedthat the samecalculationcan be
appliedto eontinuous nonlineardielectricswith slabsin par-
allel or perpendiculatto the capacitorplates,since the ex-
pressiorfor thetotal dielectricconstanthasexactlythe same
form asEq. (6.3 [11].

VII. CONCLUSION

Characterizatiorof fractal structuresby lacunarity is a
muchneededstepbeyonddescriptionby a fractaldimension.
It is difficult to know from measuringa seeminglyrandom
structurewhatis the processhat generatedt. Further,even
if the processvasknown,the structure’sstatisticsareusually
difficult to analyze.Therefore,it is of valueto havea base-
line systemwhosemassdistributionis well understoodand
againstwhich lacunaritiesof other fractal processegsan be
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comparedand classified.We proposethe Levy dustfor this
role. Sincethe Fouriertransformof the LML distributionis
known explicitly, one can analyzethe spectrumof a mea-
suredstochastigrocessat handand comparewith the Levy
dust. The similaritiesanddifferencescanthenyield informa-
tion aboutthe rulesthat generatedhe observedstructure.

We addresseih detail the lacunarityof the Lévy dustand
generalizedhe definition of lacunaritygivenin [8] to higher
ordercumulantof thedistributionof In F obtaininga family
of relatedquantitiesS, for the Lévy dust,the $, dependonly
on the fractal dimensionD. This confirms that lacunarity
cannotreduceto one numberbut requiresseveralmeasure-
mentsthat are mutually dependentn subtleways.

We alsodiscussedhe distribution of the stridesbetween
themith andthe (m—1)th stepsalongtheln R axis,andfound
its tail distribution.This tail is directly relatedto the apparent
self-similarity and gives anotherpossibility to measurethe
fractaldimensionTheadvantagef this methodof determin-
ing D is in its robustnessagainsterrors due to too small
statisticsand henceis valuablefor low valuesof D, where
traditionalapproacheseedgatheringof manypoints,resort-
ing to very large datasets.

It shouldbe emphasizedhat F and S are not the only
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possiblecharacterizationsf lacunarity. See,e.g., Refs. [3]
and[4]. For Cantordustsandotherhighly hierarchicalstruc-
tures,M (R)R P is not arandomvariableindependenof R,
butratheranoisyperiodicfunctionof In R [3] andthe notion
of lacunaritybecomesnoreinvolved. Sucha log-oscillatory
behavioroccurs,for example,in fracturesidebranching12]
and in many biological branchingsystems.The notion of
lacunarityis alsobeginningto play a centralrole in the study
of diffusion-limited aggregatiorf13]. A relatedapproacho
lacunarity[4] concernghe statisticsof antipodalcorrelations
aboutpointsin the structure.ln onedimension for example,
this consistsof correlationsbetweenforward” and “back-
word” structures.The connectionbetweenthis and our ap-
proachdeserves carefullook.
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