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ABSTRACT A new model is proposed for force transmission through the cytoskeleton (CSK). A general discussion is first
presented on the physical principles that underlie the modeling of this phenomenon. Some fundamental problems of conven-
tional models—continuous and discrete—are examined. It is argued that mediation of focused forces is essential for good
control over intracellular mechanical signals. The difficulties of conventional continuous models in describing such mediation
are traced to a fundamental assumption rather than to their being continuous. Relevant advantages and disadvantages of
continuous and discrete modeling are discussed. It is concluded that favoring discrete models is based on two misconceptions,
which are clarified. The model proposed here is based on the idea that focused propagation of mechanical stimuli in frameworks
over large distances (compared to the mesh size) can only occur when considerable regions of the CSK are isostatic. The
concept of isostaticity is explained and a recently developed continuous isostaticity theory is briefly reviewed. The model enjoys
several advantages: it leads to good control over force mediation; it explains nonuniform stresses and action at a distance; it is
continuous, making it possible to model force propagation over long distances; and it enables prediction of individual force
paths. To be isostatic, or nearly so, CSK networks must possess specific structural characteristics, and these are quantified.
Finally, several experimental observations are interpreted using the new model and implications are discussed. It is also
suggested that this approach may give insight into the dynamics of reorganization of the CSK. Many of the results are amenable
to experimental measurements, providing a testing ground for the proposed picture, and generic experiments are suggested.

INTRODUCTION

Many cell functions, including growth, motility, gene expres-

sion, apoptosis, and signal transduction, are controlled by

mechanical stresses and alterations in cell shape (1–3). Forces

are transmitted between the interior of cells and extracellular

matrix through transmembrane receptors, the most relevant

of which for this discussion are probably integrins (4).

Within the cell, stresses are mediated to a large extent by the

cytoskeleton (CSK), a network of actin filaments (AFs),

intermediate filaments (IFs), and microtubules (MTs). This

filamentous structure extends throughout the cytoplasm. The

receptors connect to the CSK at focal adhesion points,

effectively linking the nucleus to the surface of the cell.

Conventional models treat the cell as a membrane en-

closing a continuous internal medium that may be elastic,

viscous fluid, or viscoelastic (5–10), but this approach has

been questioned in recent years. There is evidence that such

descriptions of the cell do not capture key features of the

mechanics of cells, such as the nonuniformity of strain

distribution inside the cell (6,11–13) and directed propaga-

tion of force stimuli over large distances across CSK net-

works (14,15). These phenomena cannot be accounted for by

conventional continuous descriptions without resorting to

complex anisotropic constitutive properties correlated over

large distances across the cell. This led to suggestions that

the intracellular mechanics may be better understood if the

effects of the discreteness of the CSK were taken explicitly

into consideration (12,13,16–20).

The short- and long-time responses of cells to forces are

governed by different mechanisms and therefore require

different modeling. A force stimulus applied to the cell first

propagates away from the stimulation point through the

mechanical response in the medium due to minute changes in

internal strains. These changes take place on timescales that

are very short compared to biochemical responses, which

propagate only at the speed of diffusion, distance;
ffiffiffiffiffiffiffiffiffi
time

p
.

Although it is clear that biochemical activity plays an

important role in intracellular mechanotransduction, driving

the dynamics of reorganization of the CSK, the difference in

timescales relegates it to trail the initial mechanical response.

In fact, the latter triggers all this subsequent activity. There-

fore, for a complete description over a wide range of time-

scales it is essential to first understand the basic mechanics.

A comprehensive theory must include the combined effects

of both mechanisms and the interplay between them, but the

construction of such a theory is beyond the scope of this

article. Rather, I concentrate here on the development of a

fundamental model for control through mechanical response

at short timescales. The hope is that such a model will serve

as a stepping stone to more complex versions that would

include the mechanochemical aspects. Possible implications

of the model for the biochemical reorganization of the CSK

will be discussed briefly in the concluding section.
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Of particular interest are observations of ‘‘action at a dis-

tance’’, namely that upon pulling a bead attached to a recep-

tor in the membrane, the relatively distant nucleus changes

shape (14,15,18,19). This type of response suggests that

localized force stimulation of membrane receptors can be

communicated reliably to the vicinity of the nucleus without

grossly distorting the entire cell.

Although the implication of the discreteness of the CSK

structure in occurrence of nonuniform stresses appears to make

sense on some conceptual level, it introduces several difficul-

ties. One is that stress propagation through discrete networks is

sensitive to the structural details of the network and therefore

quantitative predictions of discrete models would depend

strongly on model details. Another difficulty, hardly addressed

in the literature, is that nonuniform force transmission and

action at a distance requires particular network structural

characteristics, as will be discussed in detail below. A third

problem concerns the methodology of science in general. A

model should provide accurate predictions, for example, on the

details of the intracellular response to force stimuli at the

membrane. However, to compute the forces at every structural

element of the CSK is a hopeless task: the CSK network not

only contains many filamentous elements, but its structure also

changes constantly, both from cell to cell and in time. The

default description of many-element systems is normally by

continuum coarse-grained models, and blaming the continuous

nature of conventional stress models for the failure to account

for the observed phenomena leaves one with a difficult deci-

sion regarding the introduction of an alternative. These

problems have severely hindered the development of a first-

principles predictive model of force mediation in the CSK.

It is in this context that one should view the controversy

that arose after the proposal of Ingber and co-workers that

the CSK may be described as a tensegrity structure (21,22).

The term tensegrity, short for tensional integrity, had been

coined by R. Buckminster Fuller in the 1920s, and it refers to

stable structures of force-carrying stiff rods and taut strings

(23). Although Ingber’s idea dates back to the 1980s, its

usefulness has remained controversial. One critique of it is

that even on the static level it is difficult to translate this idea

into detailed predictions on intracellular propagation of

stresses. Another problem is quite fundamental: tensegrity

cannot really explain nonuniform stresses on scales much

larger than the mesh size of a framework, an issue that will be

discussed in more detail below. Consequently, tensegrity toy

models (16,17,25–27) are too small to be useful on a quanti-

tative level, and predictions made on the basis of descriptions

of the CSK as ordered lattice networks (28) are not only unre-

alistic, but also miss a key point, as will be made clear below.

The discrete picture has been taken to an extreme by Wang

and Suo (20), who, following observations of forces guided

by particular actin bundles in human airway smooth muscle

cells, analyzed only the one-dimensional behavior along

such bundles. The main problem with this approach is that it

ignores the three-dimensionality of the CSK, artificially

decoupling the high-dimensional contractile forces that lead

to prestress (see discussion in the concluding section) from

the force stimulus that is mediated into the cell. For example,

that model cannot predict the path that the force will take into

the cell, nor how mediated stimuli would superpose on the

prestress.

The claim of this article is that the observations of action at

a distance have implications that go well beyond the idea of

tensegrity and may call for a shift of paradigm altogether.

The central aim of this article is the resolution of the above

difficulties and the development of a generic model for the

transmission of force stimuli in the CSK. The structure of

this article is as follows. First, a general discussion is pre-

sented on the issue of cell control over mediation of forces

from a designer’s point of view. This discussion elucidates

several advantages of transmission of channeled forces

through the CSK. Next, the requirements of the model to be

developed are specified. These provide clear criteria against

which models in general, and this one in particular, must be

tested. The performance of conventional continuous models

is then examined against the requirements. Two fundamental

premises that appear to underlie the recent drift in preference

toward discrete models are identified as misconceptions and

put straight.

This preliminary discussion forms the basis for the main

proposal of this article, that a natural way to achieve the

functionality requirements and to explain the observations of

nonuniform stresses and action at a distance is for large

regions of the CSK to be isostatic or near-isostatic. Isostatic

states are then defined, and a brief review is presented of

isostaticity theory. Explicit solutions for stresses in two-

dimensional isostatic systems are presented, demonstrating

that forces can be communicated controllably from the bound-

ary into the cell. Next, a quantitative analysis is developed

of the structural conditions that the CSK must satisfy to be

isostatic. Due to lack of data, several possible scenarios are

analyzed. This analysis makes it possible to test the isostaticity

idea by direct observations of particular statistical properties

of the CSK, and potential experimental tests for doing so are

suggested. The results are summarized in the concluding

section and some implications of the model for the reorga-

nization dynamics of the CSK are suggested.

Control over stress transmission

Cells constantly need to respond to mechanical stimuli

applied at receptors on the membrane. In many cases, the

response involves adjustment of the internal structure, where

the nature of the adjustment strongly affects the functionality

of the cell. Consequently, shape changes must be controlled

to a very good precision. Shape changes are directly linked to

the way that intracellular stresses are mediated and the under-

standing of the control mechanisms that govern mechanical

stress transmission in the cell has been one of the central

quests in the field.
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Suppose one is required to design such a mechanism from

fresh. Efficiency requires that several basic principles must

guide such a design: 1), minimal complexity; 2), a response

time that is short relative to other processes in the cell; 3),

the force communicated to the nucleus should relay as much

information as possible about the position and nature of a

faraway stimulation (e.g., at the membrane); and 4), the in-

formation should be communicated with as little attenuation

as possible.

A transmission mechanism based on an initial mechanical

response satisfies both the first and second requirements ; it is

simpler to manage than the coordination of an array of

biochemical reactions and it takes place over timescales that

are much shorter than chemical reactions, which rely, among

other factors, on diffusion.

To satisfy the third requirement, it should be possible to

determine in the neighborhood of the nucleus both where

force stimuli originate at the membrane and the character-

istics of the stimulating force. The simplest way to achieve

this is by retaining directional information; extending a

line in the direction that the force comes from gives

information about the rough location of the stimulus at the

membrane.

The fourth requirement is essential, because the multitude

of functionalities that take place simultaneously in cells give

rise to ‘‘noisy’’ environments. A signal transmitted from the

membrane has to travel a long way through such an envi-

ronment and still be detected above the noise. This places

restrictions both on the largest possible rate of attenuation of

the signal and on its magnitude. One way to maintain a large

magnitude is by keeping the transmitted forces focused as they

propagate through the CSK (see Fig. 1).

Having specified the requirements of the system, let us

now consider what would be regarded as a good model. First

and foremost, it should give the best possible combination of

specifications 1–4, which should allow a good level of

precision in the communication of forces across the CSK.

Second, the model should be able to explain experimental

observations, in particular, nonuniform distribution of

stresses in the cell and action at a distance. Third, it should

go beyond qualitative explanations and conceptual under-

standing and provide quantitative predictions against which

it could be tested. Ideally, such predictions should include

forecast of the spatial distribution of forces that develop in

the CSK. This means that, given a force stimulus at a

particular location at the membrane (say, point A in Fig. 1),

the model should be able to predict, at least in principle,

whether the force is felt at point B and its magnitude at that

point. As will be discussed in the concluding section, this

requirement is also important in understanding the effects

of the static picture on the dynamic reorganization of the

CSK.

The fourth requirement touches at the heart of the ongoing

controversy: should the model be discrete or continuous?

This issue is not straightforward and requires some discus-

sion. Continuous models are the default description of most

physical phenomena. This is despite the fact that, at some

basic level, whether molecular, particulate, or celestial, all

systems are made of discrete elements. The main reasons for

this are: practicality—one is often interested in behavior on

lengthscales (and, correspondingly, timescales) that are

much larger than the discrete elements and therefore the

wealth of data on the discrete level is often more prohibitive

than it is helpful—and convenience—analysis of continuous

functions is easier for theorists then the manipulation of

discrete functions. Thus, whenever possible, the first attempt

at modeling any physical system of many ingredients has

always been on the continuous level. But this should not be

done at all cost. For example, in a network it would be

useless to describe continuously phenomena that take place

on the scale of the discrete mesh size. A continuous model is

a coarse-grained description that is useful only when the

measurable, or interesting, phenomena are on lengthscales

much larger than this size. Thus, to construct a continuous

model it is essential to first understand the dominant mech-

anisms on the discrete level and then build a continuous

description that is a faithful representation of those mech-

anisms.

Vis-à-vis the requirements listed above, conventional

continuum models of stress transmission in the CSK do

not seem to perform well. The main argument against them

is that they give rise to uniform propagation of stresses

from the point of force stimulus (e.g., point A in Fig. 1 b).

This both disagrees with observations and dissonates with

requirements 3 and 4. To construct a better model, one has to

first analyze the reason for this shortcoming. The following

argument demonstrates that the problem is quite fundamental

and it lies in the premises that are built into the equations

of conventional models. Specifically, it is the premise that

continuous-stress equations must involve information on

deformations. Such information could be either in the form

of stress-strain relations, in the case of static models, or in the

form of stress-strain rate relations, in the case of viscoelastic

models. This idea is paradigmatic in current modeling of

FIGURE 1 Localized force stimulus is applied at point A and is felt at

point B through the cytoskeleton that extends between these points. Two

modes of propagation of the force are sketched: (a) directed propagation,

where the force is mediated through a narrow channel; and (b) dispersive

propagation, where the stress becomes more uniform as the distance from A

increases. In b, the force felt at point B is a small fraction of the original

stimulus, because the stimulus force is supported practically by a large

surface, e.g., the thick arc in the sketch.
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mechanical stresses and it can be traced back to Saint-Venant

(29), who introduced compatibility conditions to calculate

stresses in elastic solids. Since elasticity theory is the flagship

of this paradigm, it is convenient to illustrate the problem

within this context and in two dimensions.

In mechanical equilibrium the continuous stress field must

satisfy force and torque balance conditions, which in two

dimensions can be written in the form

sxy ¼ syx ðtorque balanceÞ (1)

@sxx

@x
1

@sxy

@y
¼ gx ðforce balance in xÞ; (2)

@sxy

@x
1

@syy

@y
¼ gy ðforce balance in yÞ: (3)

In these equations, sij are the components of the stress

tensor (i, j¼ x, y) and g~ðr~Þ is an external force field applied to

the medium. Body forces can be disregarded in the following

analysis without loss of generality. The three equations 1–3

are not enough to solve for the four components of the stress

tensor sij and Saint-Venant proposed to close the set of

equations in two steps. First, impose a compatibility condi-

tion that the material remain continuous under deformation.

In two dimensions this provides one additional equation that

relates the second derivatives of the strain field. Second,

introduce a further independent constitutive relation between

the stress and the strain. The same procedure works in three

dimensions. There are nine components of the stress tensor

to determine, but only six balance conditions—three on

forces and three on torque moments. The equations required

to close the set are provided by imposing compatibility

conditions, which interrelate the second derivatives of the

strain field, and then supplementing these conditions with

stress-strain relations.

The involvement of the gradients of the strain field has a

crucial consequence: it makes the stress field equations

elliptic. It is because of this very feature that the stress field

becomes increasingly uniform away from a localized force

stimulus, as sketched in Fig. 1 b. This type of solution not

only disagrees with observations of action at a distance, but

also clashes with requirements 3 and 4 in that they attenuate

along any path from A to B and make it difficult to identify at

B the origin of the force stimulus. Thus, it is the involvement

of compatibility conditions that undermines the use of

continuous elasticity for the description of intracellular

stresses. The above argument can be readily extended to

viscoelastic models since those use compatibility and strain-

rate information to close the stress equations. Not surpris-

ingly, viscoelastic models are also hard pressed to explain

highly nonuniform stress propagation.

Thus, we arrive at a significant conclusion: the attenuation

of stresses in conventional continuous models stems from a

basic principle built into the equations, not from the descrip-
tion of the stress as a continuous field. It should be empha-

sized that not all continuous models lead automatically to

dispersion of stress. For example, hyperbolic equations give

rise to solutions that propagate nonuniformly along charac-

teristic lines. It follows that continuous models may not be as

inadequate as believed, and their rejection merely for being

continuous may be misguided.

Let us consider now the other end of the argument, the

seeming advantages of discrete models. Other than the

discontent with continuous models, the main drive behind

the move in this direction was the seemingly intuitive idea

that discrete structures make it possible to explain both the

observations of nonuniform intracellular strains and action at

a distance. This idea is based on a presumption that, simply

by being discrete, structures can retain directional informa-

tion and guide forces in a focused manner. This, however, is

a misconception! In most known discrete structures, focus-

ing of forces can only take place on the scale of the mesh

size; over larger distances, this is usually no longer the case.

After all, all materials are made of discrete elements at some

basic scale, yet many materials display dispersion of stresses

on macroscopic scales as if they are elastic or viscoelastic.

The action at a distance is often observed over distances that

are considerably larger than the mesh size of the CSK. This

calls to question the idea that the mere introduction of dis-

creteness can guarantee directional force mediation over

scales comparable to the size of the CSK.

In view of these conceptual problems and the aforemen-

tioned advantages of continuous modeling, it seems that the

loss of faith in the potential of the latter for stress trans-

mission in the CSK may be premature.

To summarize, any good model of intracellular stress

transmission should satisfy well defined requirements and,

although conventional continuous models fall short, current

discrete models are based on a misconception and contin-

uous modeling in general need not be precluded.

However, to be useful, a continuous model must give rise

to a set of nonelliptic equations, and the question is whether a

physically plausible such description can be constructed.

Ideally, we should start from a discrete picture that supports

action at a distance and coarse-grain it consistently to the

continuum while retaining this feature. The key to a suc-

cessful such approach is the observation that discrete high-

dimensional networks transmit forces over distances in a

focused manner if they are in isostatic states. The definition

of these states and the way that stress is transmitted in

isostatic media are discussed next.

Isostatic states and isostaticity theory

It is convenient to describe isostaticity in one class of

isostatic structures, statically determinate systems. A stable

structure of discrete elements is statically determinate when

all the forces that its components exert on one another can be

determined from statics alone. Equations of statics involve

only balance conditions, of forces and of torque moments. A

high-school textbook example of such a structure is a ladder
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of a given weight standing on a rough floor and leaning

against a smooth wall (see Fig. 2). The floor exerts on the

ladder forces in the x and y directions, whereas the wall exerts

on the ladder only a force in the x direction. In mechanical

equilibrium, the three forces can be determined by three

balance conditions on the ladder, two of force and one of

torque moment. A point to note is that the determination of

the forces requires no information whatever about the con-

stitutive properties of the material that makes the ladder, e.g.,

its Young’s modulus.

The same is true for systems of many ‘‘ladderlike’’ ele-

ments: static determinacy is independent of the number of

elements, which can be as large as 1012 in some materials.

The observation that the forces can be determined regardless

of the compliance of the structural elements has a striking

consequence. Balance conditions contain information only

about spatial distribution of forces, whereas compliance is

information that relates the forces to deformations. This

means that in statically determinate structures the forces are

independent of any deformation-based information. Now,

the stress field is only a continuous representation of the field

of discrete forces. It follows that information about strains or

strain rates is redundant for the determination of stresses in

such media. Since strain-related information is at the founda-

tion of elasticity and viscoelasticity, then the field equations

of these conventional theories are inadequate to describe

isostatic states. This already gives a first indication that isos-

tatic networks may not transmit stresses like conventional

materials.

Whether a framework is in an isostatic state depends on its

structural characteristics and the type of forces that it can

carry. To identify the relevant structural properties that give

rise to such states, it is useful to analyze a simple example

first. Consider a framework of many thin struts connected

rigidly at arbitrarily positioned junctions. It is well known

from Maxwell’s work (30,31) that for such structures to be

statically determinate the mean number of elements

connecting at the junctions, �zz (coordination number, degree,

or valency), has a particular value, zc (32) when averaged

over all junctions. (The analysis presented here presumes for

simplicity that the number of junctions is very large, which

means that the ratio of boundary to bulk junctions is very

small. It is possible to show that this assumption can be lifted

and therefore that the argument holds for any system of finite

size (R. Blumenfeld, unpublished data).) When this condi-

tions is met the number of force components in the struts is

equal to the number of balance equations that one can con-

struct for the junctions. Frameworks with �zz, zc are mechani-

cally unstable and would rearrange spontaneously under the

influence of an external load. In frameworks where �zz. zc,

not all the forces can be determined from the balance equa-

tions and additional conditions are required. Consequently,

the global stress transmission in the latter structures is not per-

fectly isostatic, but may resemble in some regions the behav-

ior of conventional solids (R. Blumenfeld, unpublished data).

The understanding of stress transmission in isostatic

media has improved considerably in recent years, particu-

larly in the context of granular assemblies and cellular solids

(34–36). Of particular significance to this discussion is a

recent development of isostaticity theory for cellular solids

(36,37). The theory starts from the discrete Newton’s

equations for isostatic structures and provides a continuous
description of the equations that govern the coarse-grained

stress field. A detailed description of the theory can be found

in references (36–38). In the following, only the salient

points for two-dimensional systems are reviewed.

The closure equation of isostaticity theory in two dimen-

sions comes from a local torque-balance condition. This

condition relates between the local stress and a specific fabric

tensor pv
ij, which characterizes the local details of the

structure (see Fig. 3). For example, for a planar framework

of struts (denoted by the dotted lines in Fig. 3), these

quantities are computed from

p
v

ij ¼
1

2
+
3

c¼1

r
cv

i R
cv

j 1R
cv

i r
cv

j

� �
; (4)

where i and j are indices that run over x and y and the vectors

r~cv connect at the midpoints of the struts that emanate from

junction (vertex) v. These vectors circulate the junction in the

anticlockwise direction and make loops around the voids,

which they circulate in the clockwise direction (see Fig. 3).

The vectors R~cv point from the center of the triangle of

vectors around v to the center of one of its neighbor loops c.

This fabric tensor is symmetric, pv
ij ¼ pv

ji, and discrete,

namely, it takes a specific value at each junction. The coarse-

graining of this tensor leads to a continuous description of

the structure, pijðr~Þ. In terms of this tensor the closure

equation in two dimensions is

FIGURE 2 Ladder of weight W standing on a rough floor is leaning

against a smooth wall. The friction coefficient of the floor is m. 0, whereas

that of the wall is m ¼ 0. The floor and the wall react to the forces that the

ladder applies on them via the forces f~1, f~2 and f~3. In mechanical equilibrium,

the three forces can be determined by balance conditions alone—of forces

and of torque moments. The forces are independent of the compliance of the

material of the ladder.
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pyysxx 1 pxxsyy ¼ 2pxysxy: (5)

Equations 1–3 and 5 form the stress field equations for

two-dimensional continuous isostatic media. Although the

field equations seem difficult to analyze in their present form,

it is possible to decouple them, using an expansion in the

gradients of the fields pij, which turn out to decrease strongly

with lengthscale. To lowest order, this gives the following

explicit equations for the stress components (36)

pxx

@
2

@x
2 1 2pxy

@
2

@x@y
1 pyy

@
2

@y
2

� �
sij ¼ fij; (6)

where the terms fij are known functions of the components of

the fabric tensor and of the gradients of the external forces

g~. The exact derivation of Eq. 6 is not essential for this

discussion; what is significant is that it is hyperbolic! This

means that the solutions of Eq. 6 for localized stimuli do not

spread uniformly but rather propagate along narrow chan-
nels. Such a set of hyperbolic field equations and their

solutions are termed here ‘‘isostaticity theory’’.

To illustrate the narrow-channel solutions in a particular

system, consider an isostatic medium occupying the semi-

infinite plane x $ 0, as sketched in Fig. 4. Let us presume

that on the boundary of this system, x ¼ 0, there acts a

localized stimulus consisting of a force in the x direction, and

choose the point around which the force is localized as A ¼
(0, 0). The boundary data is most conveniently represented in

terms of stresses, sxx(x ¼ 0, y) ¼ U(y), and their gradients,

@xsxx(x ¼ 0, y) ¼ V(y), where U(y) and V(y) are arbitrary

functions that, to mimic a localized stimulus, are narrowly

distributed around A. The imposition of the boundary data

on sxx and @xsxx is chosen for its consistency with the

hyperbolic nature of Eq. 6. To make contact with experi-

mentally measured forces, note that if the stimulus acts over

a boundary section of size d then the force Fx in the figure

is
R d=2

�d=2
sxxdy. For simplicity, I also assume that the external

field g~ is constant in space (e.g., gravity). The general

solution of the field equations under this stimulus is

sxx ¼
1

2
U

S
0

p0

xx

h

� �
1U

S
0

p0

xx

z

� �� �
1

1

2

Z z

h

V
S

0

p0

xx

t

� ��

1
p

0

xy

p
0

xx

U9
S0

p
0

xx

t

� �#
dt; (7)

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

xy � pxxpyy

q
and U9 ¼ dU(s)/ds is the deriv-

ative of U with respect to its argument. S0 and p0
ij stand for

the values of these quantities along the boundary x ¼ 0. The

coordinates h and z are linear combinations of x and y

FIGURE 3 Example of the structural characterization in a two-dimen-

sional framework of struts. The vectors r~cv connect midpoints of the struts

around junction v, circulating in the anticlockwise direction. The vector R~
cv

extends from the center of triangle v to the center of one of its neighbor

loops, c. The symmetric part of each term in the tensor Ĉv ¼ +
l
R~

cv
r~cv gives

the components of the fabric tensor pij, which couple to the stress tensor in

Eq. 5. This equation and the balance conditions 1–3 form a closed set of

stress field equations.

FIGURE 4 Example of the propagation of a bell-shaped stimulus at the

boundary into a two-dimensional isostatic medium. The medium is continu-

ous and the magnitude of sxx is plotted at discrete points in the material. The

values of the components of the geometric tensor are taken to be random.

Note that 1), the propagation need not be symmetric around y ¼ 0; and 2),

the amplitudes of the forces along the two channels need not be the same.
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h ¼ � 11
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pxx
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pxx

S
y; (8)

where the coefficients of x and y depend only on the

geometric characteristics pij. The solution (7) shows that the

boundary stimulus propagates into the medium via two

characteristic lines, yh(x) and yz(x), along which the values of

h and z are constant. For example, suppose a stimulus of

magnitude s0 has a bell-like form and is localized within an

area of size d on the boundary,

UðyÞ ¼ s
0
e
�y

2
=2d

2

and VðyÞ ¼ 0: (9)

The explicit solution for the stress field in the medium for

this loading is
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2
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2

xx 1 1 � pxy
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2d
2
p

2

xx

2
664

3
775: (10)

The solution consists of two bell-shaped peaks that prop-

agate into the medium, as shown schematically in Fig. 4. The

peaks of the signals are centered on the two lines

yh ¼
S1 pxy

pxx

x and yz ¼
S� pxy

pxx

x: (11)

The forces that propagate along these lines can be

calculated by first using Eq. 11 to find the local unit tangents

to these lines,~tth and~ttz, and then carrying out the following

integrals

Fh ¼
Z d=2

�d=2

ŝs �~tthdy and Fz ¼
Z d=2

�d=2

ŝs �~ttzdy:

This class of nonuniform solutions provides an effective

mechanism for transmission of the force from the stimulus

point into the cell via two narrow channels, along which the

forces hardly attenuate. Although the trajectory of a channel

may fluctuate locally, its general direction is well defined.

For example, the trajectories drawn in Fig. 4 were computed

for random values of the pijs, chosen from a broad distri-

bution. The amplitude of the fluctuations was 0.1 with a

standard deviation of 0.08. Yet, the lines appear almost

perfectly straight. This feature makes it possible to identify

the origin of the stimulus force anywhere along the transmis-

sion channel from the local gradient. Another significant

feature of this model is that, given knowledge of the

boundary stimulus at point A and of the (possibly temporal)

structure of the network, it is possible to determine a priori

the exact paths that the forces would take from A. This has

possible ramifications on the dynamics of reorganization of

the CSK (see discussion in the concluding section). It is also

possible to terminate one of the paths by local reorganization

of the CSK structure, as will also be discussed below, giving

the cell even greater control over the force transmission.

A caveat to the analysis is that, at present, isostaticity

theory has only been developed explicitly in two dimensions.

The three-dimensional theory, where three ‘‘missing’’ con-

ditions are required to close the stress equations, has not yet

made an appearance in the literature. Nevertheless, these

equations have been derived recently by this author, as will

be reported shortly. Initial calculations of simple networks

indicate that the three-dimensional equations support a similar

type of nonuniform solution.

The above discussion provides a potential dream model

for intracellular stress transmission: 1), it is conveniently

continuous, yet it describes communication of forces via

narrow channels; 2), the model gives rise to a nonuniform

transmission of signals that describes the action at a distance

observed experimentally; 3), forces hardly attenuate along

the channels, giving very good signal/noise ratios; 4), the

narrow channeling makes it possible for the cell to exercise

good control over the signal; and 5), the predictability of

force path directions both enables the modeller to predict the

exact stresses that develop in the CSK and allows the cell

itself to exploit this feature as an input for the reorganization

dynamics of the CSK structure.

It follows that an isostatic, or near-isostatic, structure of

the CSK would make possible a good control over mediation

of forces and provide an explanation for several difficult

experimental observations. But is the CSK close to an isos-

tatic state? This author could find no direct experimental

evidence that would provide a clear-cut answer to this ques-

tion. Such evidence is essential if we wish to benefit from the

advantages that this model offers. To provide a basis for

testing this issue, it is important to quantify the structural

characteristics that need to be observed if the CSK is in such

a state. This is done in the next section.

The conditions for isostaticity of the CSK

Of the three primary types of filaments, AFs, IFs, and MTs, it

is commonly believed that the former two support only

tensile forces. However, it is worth keeping in mind that

bending forces can be ignored only if they give rise to suf-

ficiently weak torque moments. Whether this is truly so

depends on the force magnitude and the filament rigidity.

In particular, sufficiently short and thick bundles of AFs may

be able to support weak bending forces. When, or if, that

happens these must also be regarded as stiff elements. Note

that this type of sensitivity to the magnitude of the bending

force has no analog in conventional continuous theories,

another fundamental difference between the two approaches.

In contrast, MTs, which are hollow and stiff cylindrical

filaments, are able to support relatively large compressive and

bending forces. Consequently, they are usually regarded as

rigid struts. Note that struts need not necessarily be straight.

AFs typically form junctions of two kinds: 1), cross-links

between two linear filaments, in which case four arms come

out of the junction and it is called quadrivalent; and 2),
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branching points, in which case three arms emanate from the

junction and it is called trivalent. The CSK framework can be

regarded as a collection of elements, each extending between

two neighboring junctions. Any one filament may consist of

a number of elements, e.g., the filament in Fig. 5 a, which

includes elements a, b, and g.

An element transmits a force between junctions. Cable

elements transmit only longitudinal (tensile) forces, whereas

struts transmit forces that have both longitudinal (tensile or

compressive) and transversal (bending) components. The

bending components give rise to torque moments around the

junctions. A force vector between two junctions is therefore

characteristic of the element between them and is termed in

the following ‘‘element force’’. An element can also transmit

a torque moment. For the purpose of the following analysis,

elements that transmit no force at all between junctions are

not considered to be part of the framework.

For regions in the framework to be isostatic under external

loading, even only temporarily, the forces that develop in the

elements must match in number the equations that can be

constructed around the junctions. In the following, I discuss

the conditions for isostaticity in a large region containing N
junctions. I consider three possible scenarios in increasing

levels of generality.

Scenario A

Suppose that all the junctions between the filamentous

components can support torque moments. This would be the

case if most of the filaments could support bending forces. In

this case many junctions would connect to relatively stiff

struts, as sketched in Fig. 5 b. The plausibility of this sce-

nario is low and it is presented here mainly for completeness

and to illustrate the rationale of the argument for a relatively

straightforward case. Nevertheless, it may also have practical

relevance if some of the forces that develop in the CSK under

working conditions are sufficiently weak. Although such a

possibility is unlikely to occur in bead-pulling experiments,

where forces are of the order of hundreds of pN, such a

situation cannot be ruled out a priori in cells with sufficiently

thick AF bundles.

Consider, then, a region of N junctions in mechanical

equilibrium under an arbitrary set of external forces on its

boundary. The loading gives rise to element forces, and for

the structure to be in an isostatic state the forces should be

determinable from balance equations. It is convenient to

define the following structure. Around every junction, draw

straight lines connecting the midpoints of the elements that

connect to it, as sketched in Fig. 6. These lines make edges of

polyhedra that surround the junctions and every polyhedron

is taken to be connected at its corners by a joint with its

neighbors. Under an external loading, this framework trans-

mits forces between neighboring polyhedra v and v9, which

are the analogs of the element forces fvv9 between junctions v
and v9 in the original network (see Fig. 6). Each fvv9 is a

vector, which means that at every contact between neigh-

boring polyhedra there are three unknowns to determine. The

number of unknowns is then three times the number of struts,

Nunknown ¼ 3S. Denoting the valency of junction v by zv and

considering N � 1 (R. Blumenfeld, unpublished data), the

total number of strut elements between junctions is

FIGURE 5 (a) One filament may consist of several elements. Elements

are sections of the filament that are separated by junctions and transmit

forces between them, e.g., a, b, and g. (b) A junction connecting four rigid

filaments can transmit bending forces and therefore torque moments. (c) A

junction may join both cables and struts.
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Nelements ¼
1

2
+
N

v¼1

zv [
1

2
N �zz; (12)

where �zz is the mean valency per junction. It follows that there

are altogether 3N �zz=2 unknowns.

Now, each polyhedron is in mechanical equilibrium under

the forces applied on it by its neighbors. Then, it must satisfy

both balance of forces (three equations for the three space

directions) and balance of torque moments (three equations

for the three axes of rotations in three dimensions). This

gives six equations per polyhedron and altogether

6N conditions. To be statically determinate we must have

3N �zz=2 ¼ 6N, which gives that the only requirement that

this structure should satisfy for it to be isostatic is �zz ¼ 4. It

should be noted that the requirement is on the mean valency
rather than on the valency of every junction, and therefore

it is quite unrestrictive.

Note that if one presumes that the corners of the polyhedra

were connected rigidly to one another, a situation that

corresponds to subtly different boundary loading, the value

of the mean valency comes out to be �zz ¼ 2, which gives an

unphysical condition. A discussion of which situation is

more appropriate is not only outside the scope of this

analysis but also somewhat superfluous because of the

implausibility of this scenario in the first place.

Scenario B

In the second scenario, I relax the above assumptions. Let

now the range of forces be such that some of the AFs and

IFs cannot support bending. In this case, these elements can

be regarded as cables that support only tensile forces. An

element between any two neighbor junctions can be either a

cable or a strut. Presume, for the moment, that the fraction of

struts is sufficiently high so that every junction connects at

least two struts. This means that all the junctions can support

torque moments (see, e.g., Fig. 5 c). The likelihood of this

scenario is again subject to the occurrence of sufficiently

weak intracellular forces in some elements under working

conditions, as discussed above.

The difference between this and scenario A is that cable-

like elements can have only one unknown, the magnitude of

the tensile force that aligns in the direction of the cable.

Struts support forces that can point in arbitrary directions

plus torque moments, giving six unknowns per strut. De-

noting the total number of strut and cable elements in the

structure—S and C, respectively—the total number of

unknowns is then

Nunknowns ¼ 6S1C: (13)

The total number of elements between junctions is

again �zz N=2,

Nelements ¼ C1 S ¼ �zz N

2
: (14)

Since every junction can support a torque moment, then,

to be in mechanical equilibrium, each polyhedron must

satisfy six equations as before, giving a total of 6N equations.

It follows that for the structure to be isostatic the following

equality must be satisfied

6N ¼ 6S1C: (15)

Solving from relations 14 and 15 for S and C, we obtain

the following conditions for isostaticity:

S ¼ 12 � �zz

10
N and C ¼ 3ð�zz� 2Þ

5
N: (16)

Recall that this scenario requires that the number of struts

around every vertex is at least two. A detailed analysis of this

constraint, which will be done elsewhere, shows that this

second scenario is not possible and that networks of struts

and cables cannot be isostatic if all the junctions are rigid.

Isostatic states can only be supported when some of the

junctions are sufficiently soft and cannot support torques.

This scenario is analyzed next.

Scenario C

In the third scenario the assumptions are relaxed further,

making it the most general and the most realistic. The net-

works are now allowed to contain some junctions that cannot

support any torque moment. Let these junctions comprise a

fraction x of the total number of junctions N. The key

difference between this and the previous scenario is that in

mechanical equilibrium these xN junctions can only provide

three equations of force balance each. The remainingN(1� x)

junctions can still provide six balance equations each as

before—three of force and three of torque. Therefore, the

FIGURE 6 Construction of the framework of polyhedra. The edges of a

polyhedron consist of lines extended between midpoints of elements

meeting at the junction. Every polyhedron is considered to connect to

neighboring polyhedra at its corners. There are three conditions of force

balance around every polyhedron and, depending on the nature of the

elements entering the junction, three conditions of torque balance.
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total number of equations available to determine the forces is

now 6N(1 � x) 1 3Nx ¼ 3N(2 � x). As before, there are six

unknowns to determine at each strut and one unknown to

determine at each cable, and relation 14 still holds. However,

care must be taken when counting the C. Some of the xN
junctions, which do not support torques, may still be con-

nected to the end of exactly one strut. Being the only strut at

a junction means that it can only support a longitudinal force,

tension or compression. This means that despite being a stiff

element, such a strut only gives rise to one unknown force

component. Therefore, for the purpose of the analysis of this

scenario, such a strut should be counted within C. Requiring,

now, that the number of equations be equal to the number of

unknowns gives

3Nð2 � xÞ ¼ 6S1C: (17)

Solving relations 14 and 17 gives that for static determi-

nacy there should be the following numbers of struts and

cables

S ¼ 6ð2 � xÞ � �zz

10
N and C ¼ 3ð�zz1 x � 2Þ

5
N: (18)

To check this result for consistency, note that x ¼ 0

reproduces Eq. 16. When x ¼ 1, there are no torque-carrying

junctions at all, which means that S ¼ 0. Therefore, all

elements carry forces that align along the direction of the

filament, and Eq. 18 gives �zz ¼ 6. This is the tensegrity limit

because the structure is made mostly of cables with occasional

struts that are under compression between junctions.

Denoting the relative fraction of cables and struts in the

structure a and 1 � a, respectively, makes it possible to

deduce from the relations in Eq. 18 that the mean valency is

�zz ¼ 2 � x

1 � 5a=6
: (19)

Relation 19 describes a surface in the three-dimensional

space spanned by x, a, and �zz, as shown in Fig. 7. The values

of a and x must be consistent with one another. It is evident

that as x / 1, a / 1, and as x decreases so does a, but the

reverse statement is not true—a may be changed without

affecting x. Therefore, there is no one-to-one relation be-

tween the two. It follows that not all regions on the surface

shown in Fig. 7 are physically realizable. Nevertheless,

the relation shows that the mean valency must lie within a

limited range of values and this makes it possible to test this

prediction experimentally.

DISCUSSION AND CONCLUSION

To conclude, this article has examined the paradigm that

underlies modeling of intracellular stress transmission. It has

been shown that conventional continuous models do not fail

because of being continuous, but rather because of the Saint-

Venant compatibility condition built into the equations that

govern the stress field. This condition necessitates the intro-

duction of deformation-based information and is directly

responsible for the attenuation of stress fields away from a

localized stimulus. It is this basic feature that makes these

models inadequate for describing action at a distance.

It has also been argued that turning to discrete models as a

way to overcome this difficulty is based on two misguided

ideas: that discrete models would automatically give rise

to nonuniform fields and that all continuous models would

automatically give rise to diffuse stresses. Both these

misconceptions have been put straight: 1), discrete models

will give rise to stress fields that dissipate on scales larger

than the mesh size unless their structures satisfy specific

conditions; and 2), continuous models may give rise to

nonuniform force channeling as long as the field equations

are hyperbolic. Thus, while discreteness may be a necessary

condition for the focusing and directing of forces on the

element scale, it is by no means sufficient to maintain

directionality over large distances.

A new model has then been proposed, based on the idea

that action at a distance and channeling of force stimuli is

possible in a continuous model if considerable parts of the

CSK structure were isostatic. This concept has been

explained and isostaticity theory has been briefly reviewed

in two dimensions. This theory provides a promising model

for the transmission of intracellular forces due to several

advantages: 1), it offers the convenience of continuous

modeling and hence the ability to describe stresses on

lengthscales larger than the size of the mesh of the CSK; 2), it

gives rise to nonuniform stresses and to propagation of forces

into the cell via narrow channels, which explains the good

control that cells have over transmission of mechanical

signals; 3), it explains the experimental observations of

action at a distance; and 4), given a specific force stimulus,

the model makes it possible to predict the path along which

the force focuses as it propagates into the cell.

Next, I discussed the requirements of the CSK to be fully

isostatic. The most important condition is that the mean

FIGURE 7 For the CSK structure to be isostatic, the mean valency �zz is a

given function of the fraction of torque-carrying junctions, x, and the fraction

of cable elements, a, in the framework. This function describes a surface in

the three-dimensional space spanned by x, a, and �zz.
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valency �zz must have a specific value. This value depends on

two quantities: 1), a: the fraction of cable elements in the

structure; and 2), x: the fraction of ‘‘soft’’ junctions that

cannot support torque moments. The structural conditions

for isostaticity have been analyzed quantitatively for several

possible scenarios and it has been concluded that the most

realistic case must involve finite values of both x and a. A

general expression relating x, a, and �zz has been derived.

Before discussing the implications of the analysis, it is

useful to clarify the relations between the model presented

here and the concept of prestress (39). Most cells are under

the influence of external loading, sometimes termed con-

tractile forces or traction field (24). These forces give rise to a

stress state comprised of a distribution of tensile forces in

the filaments of the CSK network. This is the prestress. In the

language of mechanics, the contractile forces, which normally

act on extensive parts of the boundary, constitute an initial

boundary loading. A stimulus is normally an additional force

applied to the boundary which is usually quite localized,

e.g., on a focal adhesion point. The stimulus has two effects:

it modifies the boundary loading, simply because the entire

structure has to maintain mechanical equilibrium on the

timescales involved, and it changes the internal stresses.

When treating such situations in mechanics, the usual ap-

proach is to start from a simplifying assumption on the

modification of the boundary loading and to solve for the new

stress state. This is general to any mechanical model. The only

difference between my model and any other is in the form of

the solution. Since many of the filaments are not rigid, then

prestress is essential to the formation of a stress-bearing

structure in the first place. The analysis presented above

already presumes the existence of such a structure and hence

of prestress. Moreover, within the model presented here,

given the boundary contractile forces and the structure of the

network it should be possible to calculate the prestress. Then,

given the additional stimulus and the modified boundary

loading (for example, it can be assumed that this change is

small and distributed uniformly across the boundary), it is

possible to calculate the transmission of the stimulus on top of

the prestress.

This picture agrees very well with several experimental

observations. It has been observed that action at a distance is

sensitive to prestress (18,19,24). This can be understood by

considering what generally happens to a channeled force as

the prestress is changed slightly. The change can have one of

three effects on the isostatic structure: 1), no filaments

tighten or slacken and only internal stresses and strains

change; 2), loose filaments tighten; and 3), taut filaments

slacken. In case 1, the topology of the system remains intact

but junctions of the structure displace slightly, giving rise to

small changes in the values of the pij. Since the topology is

unchanged, the structure remains isostatic and the change

does not affect the force channeling beyond small modifi-

cations of magnitude and trajectory. Therefore, this case still

supports action-at-a-distance. In case 2, the tightening of

filaments adds elements to the structure and changes the

topology. In particular, this increases the value of �zz and

increases the number of unknowns. This upsets the balance

between unknowns and equations, rendering the unknowns

under-determined. This leads to dispersion of the stimuli

through the structure, which can be understood both on the

mesh and on the continuous levels. If more elements come

out of a junction, then a force coming into the junction exits

it more dispersed. On the continuous level, the under-

determinacy requires extra conditions and these are provided

by the compatibility conditions. This gives rise to locally

elliptic continuous stress equations whose solutions are

attenuative as in conventional elasticity theory. Thus, the

change in topology undermines the isostatic solutions and

the force chains disintegrate. This explains the observations

of the sensitivity of action at a distance to elevation of the

prestress. In case 3, the topology changes as well, because,

for the purpose of stress transmission, slackened elements

cease to be part of the structure. This changes again the

numbers of elements and junctions, upsetting isostaticity in

regions of the network. Consequently, the force channels are

no longer the correct solutions in the vicinity of slackened

elements, and they disintegrate. This explains why prestress

is necessary for the stability of the CSK (24). Hu et al.

reported experiments where the tensile stresses in the CSK

were modified by over-expression of caldesmon (18). The

caldesmon decorates AFs and inhibits their tension, which

leads to local slackening of elements. At some level of

caldesmon they have detected regions of concentrated strain.

In this experiment the strain should be understood only as a

means to measure stress, and therefore such concentration

indicates force channeling. On reducing the over-expression

of caldesmon, they observed emergence of more regions of

high strain. This is the same sensitivity to prestress discussed

above: on increasing internal prestress, more elements have

joined the force-carrying network, giving rise to stresses

away from the initial focused channels. It is interesting to

note that, in addition to the appearance of new stressed

regions, their images show that initially focused stresses

also disappear (compare the strains at coordinates (x, y) ¼
(�15, � 5) mm between Figs. 3 C and 3 E of Hu et al. (18)).

This inverse response to increasing local tensile forces

cannot be explained by any conventional theory, but it is

indicative of isostatic behavior. All these observations lend

strong support to the isostatic model.

The analysis presented in this article highlights an issue

that has no analog in conventional models. Whether a

structure is isostatic depends crucially on the distribution of

its cable and strut elements. But IFs and AFs, which behave

as cables under typical forces of bead-pulling experiments,

may behave as struts under much weaker forces, especially

if bundles of AFs are present. This raises an important

question: could intracellular forces under working condi-

tions be sufficiently weak in cells to allow some AF bun-

dles to behave as torque-bearing struts? If this is so, then
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bead-pulling and twisting experiments may be missing the

point by measuring at force magnitudes that wash out very

relevant phenomena, and such measurements should be

reexamined. Note that in conventional models the magnitude

of the forces cannot play such a conceptual role.

Another point that should be emphasized is that for the cell

to exert the type of control on stress transmission described

here, the CSK structure need not be fully isostatic. It is not

inconceivable that the structure of the CSK, which is

constantly changing and reorganizing, may satisfy these

conditions only approximately and so be just nearly isostatic.

The proximity to perfect isostaticity is measured by the

discrepancy between the number of unknown forces and the

number of balance equations that can be constructed for

them. If the discrepancy is not too large compared to the

number of junctions, then the CSK consists of considerable

regions that are locally isostatic. In these regions, force

transmission would be channeled along narrow paths. The

smaller the discrepancy, the larger the isostatic regions,

the closer the structure is to being isostatic, and the longer the

force channels. This would lead to minimal attenuation and

cells would have better control over the mediation of forces.

Ultimately, the proximity of the CSK to an isostatic state is

determined by the combination of the mean valency and the

ratio of cables to struts. If the mean valency is too low

relative to �zz; then a stable structure cannot be sustained at

all. If, on the other hand, too many junctions connecting

microtubular elements have high valencies then the frame-

work is over-connected and too far from an isostatic state.

This would lead to deterioration of the control over force

transmission, effecting a behavior characteristic of conven-

tional materials. Forces applied at the focal adhesion points

would then diffuse and attenuate as they penetrate the cell.

Regular periodic structures are usually in this regime due to

their high symmetry. Consequently, the relevance of models

that assume a lattice-like structure should be regarded with

caution. The ability to control proximity to isostatic states

could be a considerable advantage from a designer’s point of

view. For example, the dependence on a global mean of the

valency rather than local details means that the ability to

channel and control forces is not over-sensitive to local

structural fluctuations.

This leads to an interesting speculation: an effective

strategy for the cell would be to maintain a CSK structure

that is not exactly isostatic but only predominantly so. This

allows us to have judiciously selected small regions of

locally high mean valencies that behave either elastically or

viscoelastically. By controlling the size and nature of such

regions, it is possible both to maintain good control over the

paths along which forces propagate and to admit preferential

deformations that can accommodate other cell functional-

ities. Entertaining small ‘‘elastic’’ regions has another advan-

tage. Recall that in response to a localized force stimulus, an

isostatic medium generates a pair of force channels. But

the cell only needs one such signal to reach the vicinity of the

nucleus. Placing a high-z region in the path of one of the

channels dissipates the focused force and effectively termi-

nates it. Thus, the manipulation of local connectivity pro-

vides several important mechanisms to control force

propagation into the cell.

Many of these ideas lead to direct predictions, and

therefore they can be tested experimentally. One test would

be a determination of the proximity of CSK structures to

isostatic states. To obtain quantitative data on this issue,

measurements are needed of the mean valency �zz and of the

relative fractions of cables to struts a. For the latter, one

needs to use the known mechanical properties of AFs and AF

bundles to estimate whether in a given structure they should

be regarded as cables or not under given working conditions.

Using those measurements and relation 19 in inverted form,

x ¼ 2 � ð1 � 5a=6Þ�zz; (20)

it is possible to evaluate x. This value can then be checked

against independent measurements of the torque moments

that junctions of the network can support. There is a possi-

bility that such measurements can be simplified if we consider

that only some regions in the CSK need to be isostatic. The

simplification is that the measurements need not involve the

entire CSK but only selected relevant sections where action at

a distance is observed.

Another set of experiments should aim to estimate the

fraction of junctions (1 � x) where more than two MTs meet.

Although some of this information may exist in the literature,

the data needs to be reassessed, taking into consideration the

present definition of elements.

Another exciting set of experiments should focus on the

dynamics of reorganization of the CSK. If the picture pro-

posed here is correct and isostatic states indeed play a signif-

icant role in intracellular stress transmission, then it must have

implications regarding the dynamics of the CSK. In particular,

one possible aim of the reorganization process may be to

direct force transmission through control of local isostaticity.

A potential mechanism may be the following. As a force is

applied to the boundary of the network it initially propagates

into the cell roughly in the direction of the interior. By judi-

cious polymerization of filaments, following mechanochem-

ical cues, the structure can be remodeled into generating

locally isostatic regions that channel the force toward an

intended destination. Another goal of structural remodeling

would be to undermine local isostaticity, as discussed above.

Thus, experiments to investigate this issue should aim to de-

termine correlations between reorganization, connectivity

changes, and force channeling. This type of experiments

would be a significant step on the road to build a general

model that includes the slower biochemical reactions.

From a designer’s point of view, structural reorganization

better be localized for several reasons: one is for economy

in energy and raw materials; another is that the larger the

reorganization the larger the chemical activity involved, and

therefore the longer the response time; and finally, large
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reorganization processes may affect adversely other ongoing

functions of the CSK, such as being a highway for enzyme

motors. Thus, maintaining ‘‘dynamic local isostaticity’’ is

probably more efficient than managing a global isostatic

structure.

Another point to note is that a constant change of the entire

CSK structure is not economical. To use this mechanism

effectively, large parts of the CSK network must remain

relatively fixed, or change on relatively long timescales. It is

around these stable parts that the CSK structure needs to be

dynamically manipulated. It is therefore tempting to conjec-

ture that this may be one of the roles of the intermediate

filaments: to act as relatively stable elements around which

rearrangement is much more dynamic. This issue, as well as

all the speculations on the dynamics of rearrangement, is

amenable to experimental testing.

Another interesting set of possible experiments is in vitro.

I propose that construction of artificial CSK-like mixtures of

AFs, IFs, and MTs in the laboratory may be a useful way

to test these ideas in a controlled fashion. Initially the

experiments should be done on two-dimensional specimens,

at least until sufficient insight is gained on three-dimensional

systems. The prediction is that force channeling should be

observed when the right structural conditions for isostaticity

are met. It should be commented that although conceptually

these conditions can be derived in exactly the same way as

above, the quantitative values of the mean valency would be

different due to the different dimensionality. For example,

under the conditions of the third and most general scenario,

the numbers of struts and cables is, respectively,

S ¼ 6 � 2x � �zz

4
N and C ¼ 3�zz1 2x � 6

4
N: (21)

Two-dimensional model experiments in vitro have the

advantage of easy visualization and therefore it would be

also interesting to analyze the dynamic response of such a

network to stimuli in general and to the channeled forces in

particular.
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