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Abstract. We treat the probability density of homogeneous functions of independent 
variables. Assuming these variables are narrowly distributed, we find an explicit approxi- 
mate form for the Laplace transform of the function’s density. This expression is used to 
show that, if the variables are all Gaussian, then so is the global function. The latter result 
is also claimed to hold for the total resistance of any random resistor network between 
two arbitrary terminals. We further utilise our result to explicitly find the Laplace transform 
of the conductance density of (i) a hierarchical structure and (ii) a random network in 
1 + E  dimensions using the Migdal-Kadanoff procedure. In the last case we also find the 
scaling of all the cumulants and find that they exhibit a constant gap. 

1. Introduction 

Random systems are ones with an  inhomogeneous structure. They have been the 
subject of increasing interest in recent years. Such systems are, for example, diluted 
resistor networks, porous media and fractured rocks. On top  of this geometrical 
randomness there can be another one. The elementary building blocks of the system 
may (and usually do)  have properties that are distributed with a probability density 
function (PDF). Therefore even systems that have an  identical microstructure reflect 
this elementary randomness by exhibiting a global PDF of macroscopic properties. One 
of the fruitful models to treat geometrical randomness is the percolation model [ l ,  21. 
The random system is idealised to be constructed of two components with concentra- 
tions p and 1 - p ,  respectively. Near the critical concentration p c  (when one of the 
components forms a continuous path from one boundary to its opposite) many 
quantities diverge with power laws like 1 p - p c / - x ,  where x is called a critical exponent. 
Many techniques were employed to probe these exponents. Two such techniques 
relevant to our discussion are the renormalisation group [3,4] and expansion in low 
dimensions [SI. 

The first part of this paper treats random systems whose elements are narrowly 
distributed around some mean value. Assuming the quantity to be renormalised (e.g. 
the coupling constant between spins, the elastic constant, the dielectric constant or the 
electrical conductance between two terminals) is an sth-order homogeneous function 
of the microscopic variables, we find a simple approximate expression for the Laplace 
transform (LT)  of the global PDF. Having an explicit form for the density function 
enables one to probe details that are finer than just the behaviour of the mean or the 
second moment. One can, for example, study its tails in order to gain insight on  
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processes that are dominated by these tails. Moreover, it may give estimates to the 
amplitudes of various cumulants and not only for their scaling with the length or the 
concentration. Using the explicit expression that we find, it is shown that if the 
microscopic variables are real and Gaussian then, to this approximation, so is the 
global function's density. This last result is claimed to hold for random resistor networks 
( R R N )  as well, where the variables (resistances) may assume only positive real values. 
Thus if all the resistors in the network have a narrow Gaussian PDF then the total 
resistance is also Gaussian. We further treat a specific hierarchical structure [6-101 
and find the explicit form for the LT of its total conductance PDF at each iteration. In 
the second part of the paper we apply our result to find the global PDF of the 
renormalised conductance in 1 + E dimensions, using the Migdal-Kadanoff [ 111 pro- 
cedure. This is the first time that the distribution of such homogeneous fiinctions is 
discussed in such detail. The technique itself is applicable to general random functions 
and  not only to R R N  near the percolation threshold. We also obtain the scaling of the 
cumulants of the non-linear conductance [ 12, 131, 

I = (gV) l?  (1)  

For a = 1 it has been shown [14-161 that the mth cumulant of the resistance diverges 
with the length L as L ' m  where s,, is non-linear in m. These results were extended to 
include non-linear networks obeying (1) [ 171 and x, was shown to be a convex function 
of m for all a. Wc show that the critical exponent of the mth cumulant, using the 
Migdal-Kadanoff procedure in 1 + P dimensions, depends linearly on m for all a. in 
sharp contrast to the above-mentioned results. The latter technique was very recently 
used to determine the scaling of the cumulants of non-linear resistance for dimensions 
not below two [18]. Here we study the conductance cumulants, which amounts to 
discussing the positive moments and dimensions very near one. The results are similar 
where both approximations overlap. 

2. The global LT 

Assume a function @ of N independent and  random positive variables, o,, i.e. a 
homogeneous function of sth order in all of them. Each variable has a narrow PDF 

i ( u J ) .  Being of sth order, @ obeys 

with A an  arbitrary constant. Therefore 

which is readily obtained by differentiating both sides of ( 2 )  with respect to A at A = 1 .  
Assuming $(a,) is narrow for all j with ( ( 6 u ~ ) ) " * < <  uo = (U,), let us expand @ around 
the point ul = u2 = .  . . = uN = U",  

where @ o =  Woo,. . . , go) and gJ = [ d @ / d ~ ~ , l , , ~ .  Applying (3) yields 
N 

@ ( U  I , . .  . , ui , )=(l  - s ) @ o +  c g,u,. (5) 
] = I  



Probability densities of homogeneous functions 817 

The PDF of G = cP( g l , .  . . ) is 

Defining LJ(k,) as the LT of J(a,), substituting the inverse transform for J((T,) and 
writing the 6 function in a n  integral form over a variable K yields 

Substituting (5) for (D and integrating over the kJ and the a, yields 

where 6. = G - (1 - s)Q0.  Now defining 
h. 

L ( K ) E  n L](g]K) 
, = I  

we notice that L( K )  is exactly the LT of F( 6) = F (  G). Following a similar procedure 
with Fourier transforms, y,( k,), renders an  analogous result, i.e. defining 

then r( K )  is the Fourier transform of F( 6.) = F (  G). 
We note that results ( s a )  and ( 9 6 )  also hold for the less constrained variables 

--CO < aj <CO. These closed form expressions for the LT and the Fourier transform of 
the total density function are much easier to treat than (6). Therefore they may render 
a solution for the global PDF much more readily. 

In order to apply (9) to R R N  we first note that the conductance (resistance) of the 
whole network is a first-order homogeneous function of all the individual conductances 
(resistances), i.e. s = 1 .  Thus the global LT is 

N 

L ( K )  = fl L,(glK) = F ( G )  exp(-KG) dG. 
J = 1  

The prefactors g, are (i,cPo/ao)2 (or i:) [16, 191 for the global PDF of the conductance 
(resistance) where i, is the fraction of the total current, between the terminals, that is 
carried by the j t h  bond in the unperturbed state (i.e. U, = a. for all j). 

The explicit form of the LT enables one to calculate the moments and  the cumulants 
of the global PDF. We recall that the mth cumulant is the prefactor of ( i k )” /m!  in 
the expansion of the logarithm of the Fourier transform of F ( G ) ,  T ( K ) .  Employing 
(9b) we obtain 

N 

In T ( K )  = 1 In yl(g,K 1. 
] = I  

Hence the renormalised prefactor is 
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In RRN with identically distributed conductances, (1 1) simplifies via using Cohn’s 
theorem [ 191, 

For non-linear networks obeying (1) [ 12,131, equation (12a) generalises to [ 171 

3. Applications 

3.1. Narrow Gaussian variables and RRN 

First let us consider a function whose variables have a narrow Gaussian distribution, 

-a2 < a, < a2 

where 6, = ( ( c T ~ ) ~ ) ” ~  and croJ are the mean and the width of the j th  variable, respectively. 
Being Gaussian, J(u,) has only two non-zero cumulants-the first and the second. 
Turning to the global PDF we find from (11) that it also has only these two cumulants 
as the only non-vanishing ones. Since knowing all the cumulants of such distributions 
defines them uniquely [20], then to this approximation F (  G) is Gaussian too, i.e. 

1 
(2.n)”*A 

exp[ -( G - s @ ~ ) ~ / ~ A ~ ]  (14) F (  G )  = 

where A’ = X:;”=, gfSj and sD0 = Xi,”=l gjao, are the width and the mean of the global 
PDF, respectively. We proceed to show that, to the above-mentioned approximation, 
the PDF of the conductance of a R R N  is Gaussian if all its elements are Gaussian. Let 
us write the Gaussian PDF for positive variables 

where 
U 0  z=->> 1 

S d 2  
4 ( z )  = 5 1; exp( -x2) dx 

The cumulants of each individual conductance are exponentially close to those of (13) .  
For example, the first and second cumulants of (15) are (U,) = a,( 1 + A )  and (U;)= = 
a2 - c r o A ( l  + A )  where A = A(z)  = exp{-z2/[2&( 1 + +(z))]}. Similarly, higher cumu- 
lants are exponentially small. Using (1 1) for the cumulants of F (  G) now yields the 
result that they are exponentially close to those of (14), where z is replaced by 
Z = s @ , / ( A a ) .  For large networks we expect Z to be very large so that F ( G )  
approaches the Gaussian form very fast as the network approaches the thermodynamic 
limit. 

We note that the global Gaussian behaviour only reflects the original local Gaussian 
distribution. The essential behaviour, however, need not necessarily be such. For 
example, assume that the distribution of the local variables is constant between 1 + A 
and 1 - A .  The LT in this case is, in our approximation, 
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where the averaging in the exponent is over the distribution of the variables g. This 
LT is not Gaussian in general. The last example demonstrates that the approximation 
may well go beyond the Gaussian behaviour. 

3.2. Hierarchical structure 

Let us consider a network of resistors that is constructed by n iterations of a hierarchical 
structure [lo] as shown in figure 1. Such structures are used to model randomness of 
geometry [4,6-9, 131 because many problems have exact solutions on them. Assume 
each bond is a resistor of mean resistance ro and cumulants ( r m ) c .  After n iterations 
the structure consists of CJ bonds that support a fractional current of i, = 2-J of the 
total current between the terminals ( j = O ,  1, .  . . , n ) ,  where Cf = n ! / [ j ! ( n  - j ) ! ] .  The 
total number of bonds sums up  to N=4". Hence the LT of the global PDF of the 
non-linear resistance is 

where a = 2-'"+" and LY is the non-linearity parameter in ( 1 ) .  The width of the total 
PDF is 

o r  
A = 8 [ 2 + 2 - ( 2 Q + l ) ] n / 2  

in accordance with previous results [IO, 131. The total mean resistance is 
N 

R,, = ro C g, = r , , (2+2-a)n .  
j = 1  

In general, the mth cumulant is 

- ( r m ) c ( 2 + 2 1 - m ( ~ + l '  n ) .  ( R m ) c = ( r m ) c  C ; 2 " - J ( u f l ) m -  
J - 0  a c- 

n =  2 n: 1 n:O 
Figure 1. Two iterations of the hierarchical structure 
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The noise in the system is defined by 

From (19) we can solve for the total PDF, 

Hence 

The application of the treatment to more complicated hierarchical structures is straight- 
forward. Expression (21) is in some sense complementary to the distribution of voltages 
(or currents) studied in previous works [lo,  15, 171. In [lo] it was shown that, for the 
above-mentioned hierarchical structure, the density of the voltage drop on each 
individual resistor (in the ohmic case) takes the form of a log-binomial distribution. 
This log-binomial distribution is (up to a normalising constant) the probability density 
of the variable g,. Thus (8) and (9) establish a correspondence between the density 
of the currents and that of the global resistance. 

4. The global PDF of conductors in 1 + E dimensions 

Next we apply (9) to find the global PDF of a network in 1 + E dimensions using a 
Migdal-Kadanoff renormalisation procedure [ 1 I ]  (figure 2 ) .  We further generalise 
this treatment to non-linear conductors obeying (1). The global V - I  characteristic 
plot of such a network also obeys (1) [ 12,131. Therefore the total conductance of the 

Figure 2. Migdal-Kadanoff renormalisation procedure in two dimensions.  
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network is a first-order homogeneous function of the individual conductances. Con- 
sequently, it obeys (2) and (3) with s = 1, thus lending itself to our treatment. Kirk- 
patrick [ 5 ]  used this procedure to study the first moment of the total linear conductance. 
We extend this model for the global PDF and for all the cumulants of linear and 
non-linear such networks. 

The procedure consists of finding the effective non-linear conductance of U = bd- '  
bonds in parallel [ RP( b ) ] "  and then finding the conductance of b such constructions 
in series, R , ( b ) .  The total conductance is 

(22) 

where g is the conductance of an individual bond, and R, and R, should be understood 
as operators. The quantities b and d are treated as continuous parameters. For d = 1 + E 

and b = 1 + 77 ( E  and 77 being much smaller than one) equation (22) can be linearised 
to yield 

(G-r)/(g)= 1 + ~ ( k +  (23) 
where A, and A, are the series and parallel infinitesimal transformations. A similar 
procedure for the mth cumulant $( m, a )  yields 

(24) 

G, = I RA b )[ Rp( b ) l U  

(G7), / (gm),= 1 + .I(AL"'+ EA?) ) .  

The critical exponent of the mth cumulant $ ( m ,  a )  is defined through 

1+77[+(m, a ) - 2 m + ( l ,  all. ( 2 5 )  (GT)c/(gm), = b*L(m.aJ-Im*(l.a) 

Comparing (25) to (24) yields 

$(m, a )  = A:"'+ ~Ab"' '+2m4(1,  a ) .  (26) 

The mth cumulant of the conductance of a parallel blob constructed of U = bd- '  bonds 
is 

where (g;), is the mth cumulant of the conductance of the n-parallel blob and 
qc = 1 - p c .  Using (11) we derive 

(g;),= ( g m ) c n i + m i u ~ l i .  (28) 
Inserting (28) into (27) we note that the sum can be readily evaluated. This exercise 
is performed in appendix 1 to yield 

. i ~ " " = l + m ( a - l ) .  (30) 
In order to find Ai"') we use (11) and the fact that non-linear conductances defined 
by (1) combine in series just as the linear ones. Hence 

(g,"),/(g"),= b'-*"'= 1+77(1-2m) 
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Combining (26), (30) and (31) yields 

$(m,  a )  = 1 + & [ I  - m ( a +  l)]. (32) 

We note that $( 1, a )  which is the critical exponent of the non-linear conductance is 
a monotonically decreasing function of a as expected [ 131. For a + CC we see that the 
total conductance vanishes as expected for a structure containing no singly connected 
bonds ( E  + 0 ) ,  again in agreement with the results in [ 131. However, in order that the 
above treatment remain valid, the quantity k = 1 + m( a - 1) should be positive. Another 
interesting feature of equation (32) is that it displays a constant gap of &(a + 1) between 
any two successive exponents. This property stems from the linearisation procedure 
itself that is performed in appendix 1 and will be commented upon in the concluding 
section. After completing this section we learnt that results for non-linear networks 
using this technique were recently obtained for the resistance cumulants [ 181. However, 
there the negative moments of the sum (27) were treated. The solution technique 
depends strongly on the regime of moments probed and influences the results. 
Nevertheless, in the region where the two approximations overlap the results are similar 
apart from the fact that we ignored terms of order exp(- l /s)  relative to E. 

In order to find the global PDF, F(GT), we have to obtain the global LT, LT(K). 
We do this in appendix 2 and find 

(33) 

wheref(g) and L ( K )  are the PDF of a single bond’s conductance and its LT, respectively. 
In the limit 77 + 0, (GT) degenerates into f(g) as it should. To the best of our knowledge 
this is the first time a simple expression for the density function of the conductance 
has been presented. 

One can now analyse it, e.g. obtain its tail behaviour. We will treat this problem 
elsewhere. 

5. Conclusions 

To conclude we have derived the PDF of an sth-order homogeneous function of random 
variables, to the lowest order in the relative widths of the individual PDF. Since many 
properties of systems in nature can be described by such functions we believe that (9) 
may have many applications. We used (9) to show that a function of narrow Gaussian 
independent random variables remains Gaussian with rescaled parameters A and Go. 
We have claimed and demonstrated that this result also holds for RRN up to exponen- 
tially small corrections. We considered a specific hierarchical structure that models 
R R N  at the percolation threshold and found the explicit form of the Laplace transform 
of its conductance PDF. Next we have found the PDF of the RRN in 1 + E dimensions 
by the Migdal-Kadanoff renormalisation group approach. In this model we considered 
non-linear conductors and calculated the critical exponent, $(m,  a )  of the mth 
cumulant of the total non-linear conductance. This exponent was found to depend 
linearly on m and on a which implies a constant gap between successive exponents. 
A parallel result was obtained recently for the resistance cumulants [ 181. Our result 
differs from the latter because in our case terms of order exp(- l /s)  are negligible in 
relation to terms of order E. The constant gap, however, stems from the linearisation 
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procedure that is inherent to the expansion in E. Therefore we conclude that this 
approximation is correct for small values of E but cannot be extrapolated successfully 
for dimensions above two. In that regime the method used in [18] should be used. 
For m = a = 1 our results coincide with previous ones [ 5 ] .  

Finally, we emphasise that the approximation assumes 

(( 8a2)) << = ( cT)2 .  

Whenever this condition is not met one has to consider higher and higher terms in 
equation (4) leading to a totally different form of equations (9). 
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Appendix 1 

Let us first evaluate the sum in the numerator of equation (27):  
U 

I , =  C C:pc"qc"-"nk 
1 - 1  

where k = 1 + m ( a  - 1 ) .  The quantity 
k f l  

J = 1  
n k =  C ' c k ( n ) ,  

(A l . l )  

n k  can be written as a sum of factorials [21], 

(A1.2) 

where '0, is the Stirling number of the second kind and (n), is the factorial 

(n), = n ( n - 1 ) .  . . ( n - j + l ) .  

Inserting (A1.3) into (Al . l )  and summing over n yields 
(A1.3) 

(A1.4) 

Remembering that [ 51 

p c = 1 - 6  6 = exp(- l /e)  (A1.5) 
and using (A1.4) one can expand to linear power in 6 to find 

H = ( g , " ) , / ( g " ) , ~ ~ ~ = ( l + e " )  C ' c T k ( u ) , ( l - j @ )  
k + l  

,=I  

The next step is to evaluate the sum within the large brackets. Defining 

(Al.6) 
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utilising the definition of the difference of this sum [21], 
k + l  

/ ' I  
A( .Y' )=  C ~ ' ~ L ( Y ) , - I  

replacing v by x - 1 and using the identity 

(A1.7) 

yields in (A1.7) 

(A1.9) 

Employing A((x-  I l k )  = x k  -(x- l)', which is the definition of the mathematical 
difference, we obtain 

J k ( u )  z= Uk+'[ l  - (  1 - l / U ) ' ] .  (A1.lO) 

Inserting (A1.10) into (A1.6), expanding U in powers of q and maintaining only the 
linear term yields 

( A l . l l )  

Neglecting now terms of order 0 with respect to e we finally obtain equation (29) in 
the text. 

Appendix 2 

First let us find the Laplace transform (LT) of the PDF of a blob of' U = bd-'  parallel 
bonds, L , ( K )  

(A2.1) 

Expanding (A2.1) to first order in 9 and E (q = h - 1 << 1, E = d - 1 << l ) ,  recalling that 
p c  = 1 - exp( - 1/ E )  and discarding terms of order exp( - 1/ E )  with respect to E ,  we obtain 

(A2.2) L , ( K )  2 L( K ) [  1 + qe In L ( K ) ] .  

Now the global LT of the total PDF is 
b b 

LT(K) = n L&K)  = n L J K b - " ) .  
j = 1  1 - 1  

Expanding again to first order in 9 and substituting for L , ( K )  from (A2.2) yields 

LT( K )  = L( K )  + q[ (1 + E ) L (  K ) In L( K )  - aKL'(  K ) ]  (A2.3) 

where L ' ( K )  = [ d L ( x ) / a x ] , = , .  Performing the inverse transform yields for the global 
P D F  

F (  G) -- (1  - 9a)f( G)  +- 

which is the expression given in the text. 

exp(KG)L( K ) [ (  1 + E )  In L( K ) + a K G ]  d K  (A2.4) 2 r i  \ I X  -,= 
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