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Abstract 

It is shown that the dynamics of the growth of a two-dimensional surface in a Laplacian field can be mapped onto Hamiltonian 
dynamics. The mapping is carried out in two stages: first the surface is conformaUy mapped onto the unit circle, generating a set 
of singularities. Then the dynamics of these singularities are transformed to Hamiltonian action-angle variables. An explicit 
condition is given for the existence of the transformation. This formalism is illustrated by solving explicitly for a particular case 
where the result is a separable and integrable Hamiltonian. This demonstrates that, at least for a family of arbitrary initial 
conditions, Laplacian growth is an integrable problem. 

Much effort has been directed in recent years to- 
wards understanding Laplacian growths, both due to 
the rich variety o f  patterns that they display and be- 
cause o f  their occurrence in many natural and man- 
made systems. Paradigmatic cases are diffusion-lim- 
ited aggregation, solidification o f  supercooled liquid 
and electrodeposition (for a review see, e.g., Ref. 
[ 1 ] ). In spite o f  more than a decade o f  intensive re- 
search on the problem there is still no theory that can 
predict the statistics o f  the patterns that such pro- 
cesses lead to. These moving-boundary problems are 
deceptively easy to formulate yet very difficult to 
solve analytically. It has been proposed [ 2,3 ] to con- 
formally map the physical surface o f  such a growth in 
two dimensions onto the unit circle (UC)  and study 
the evolution o f  the singularities o f  the map [ 4 ]. The 
resulting equations o f  mot ion (EOMs)  are strongly 
coupled nonlinear first order ODEs that are difficult 
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to solve, other than for special cases [5 ]. Another 
difficulty with this approach is that the formalism 
breaks down after a finite time because singularities 
o f  the conformal map travel to the UC and eventu- 
ally hit it, at which time the map ceases to be ana- 
lytic. This breakdown is manifested in cusp singular- 
ities that form on the physical surface in the absence 
o f  surface tension [ 6 ]. A very important  question in 
this approach is whether the system is integrable or 
even Hamiltonian. It has been found that the prob- 
lem enjoys a set o f  conserved quantities [ 3,7 ], but it 
is unclear how these quantities can assist in finding 
an energy-like functional in the problem. 

In this paper it is shown that it is possible to trans- 
form the dynamics that govern the growth of  the sur- 
face into Hamil tonian dynamics as long as the EOMs 
hold (namely, up to the cusp formation).  This is done 
in two steps: First the EOMs of  the singularities o f  a 
general map are written down and then their space 
coordinates are transformed into action-angle vari- 
ables. The equations for this transformation are given 
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for any general initial surface. Although the general 
existence of a solution for these equations is not rig- 
orously proven here, I show that the surface evolves 
according to Hamilton's  equations, and an example 
is given where a particular system is solved exactly 
and is shown to be integrable for a family of  arbitrary 
initial conditions. The action variables are constants 
of the motion and an energy functional can be clearly 
identified. The importance of such a mapping cannot 
be overemphasized: (i) By producing such a trans- 
formation the system is demonstrated to be Hamil- 
tonian and possibly also integrable, which is an im- 
portant issue in itself; (ii) A large body of knowledge 
that has been accumulated through many decades of  
studying Hamiltonian systems is consequently made 
accessible to such growth problems. This can imme- 
diately pave the way to a theory of Laplacian growth, 
as will be reported elsewhere [ 8 ]. 

I start by formulating the problem and briefly pre- 
senting the EOMs of the singularities that are gener- 
ated by the conformal map of the surface onto the 
UC. Consider a simply connected line surface, y(s), 
embedded in two dimensions which is parametrized 
by 0~< s<  2x, and which is fixed at a given electro- 
static potential. A higher potential is assigned to a 
circular boundary whose radius tends to infinity. The 
potential field, ~,  outside the area enclosed by 7 is 
determined by Laplace's equation 

V 2 ~ = 0 .  (1) 

The surface is assumed to grow at a rate that is pro- 
portional to the local electrostatic field normal to the 
surface 

vn = - V ~ ' r i .  

Shraiman and Bensimon [4] have shown that the 
surface evolves in time, t, according to 

OtT(s, t )=  -iOs),(s, t) 

×{ lOs) , ( s , t ) l -2+ig[ lOw(s , t ) l -2]}  , (2) 

where g is a real function that corresponds to a phys- 
ically insignificant "slide" of  a point along the sur- 
face. Without that last term the EOM can be written 
as 

8s 
O W ( s , t ) = - i - -  (3) 

8 7 "  

where the asterisk stands for complex conjugate. Eq. 
(2) is the limit ofa  conformal map ( = F ( z )  that maps 
the UC onto the physical surface in the (-plane 
through 7(s, t)=limz~e~ F(z, t). The map consid- 
ered here is a general ratio of two polynomials of the 
same degree. This requirement results from the need 
that the topology far away from the growth remains 
unchanged, so as to retain the original boundary con- 
ditions on a circle far away and the generic logarith- 
mic divergence of qb when z--, oo [ 9 ]. 

dE(x) f i  z - Z  n F'= 
d z  - n=l't't z - e ,  ' (4) 

where {Z} and {P} are the zeros and the poles of the 
map, respectively. It can be shown [4,9 ] that the dy- 
namics of  these singularities are governed by the 
EOMs 

an + Qm, 
-Zn=Zn(  GO+ ~m' Zn--Zm',] 

+++(, + z 

--fDn'-~Pn( GO'~- ~m Pn~-~Zrn) ~gn({z}; ( P } ) '  ( 5 )  

where 

Qn=2 f i  (1/Zn--P*m)(Zn--Pm) 
m=, (1/Zn-Z*m)(Zn-Zm,) ' 

Go= ~ Qm f i P m  
ra= l ~-~m "~ m=l Zm 

and where the primed index indicates m' # n. 
We now wish to introduce a new set of  canonical 

coordinates that can transform this system of cou- 
pled first order ODEs into a Hamiltonian system. 
There are two reasons why one should expect to find 
a Hamiltonian at all: The first stems from the exis- 
tence of constants of the motion, as found by Rich- 
ardson [ 3 ]. The second reason relates to the fact that 
already the EOM of the surface can be written in the 
form of Hamilton's equations as follows: Eq. (2) is 
the limit of an EOM for the map F a s  z--,¢': 

OF' 0 
Ot - Oz (zF'G) , (6) 

where G is the analytic function whose limit is the 
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braces on the r.h.s, of  (2). Using the identity 

OF' Ot Oz 
Ot Oz OF' 

we obtain that 

dz O(zF'G) 
Ot - OF' (7) 

Eqs. (6) and (7) can then be interpreted as Hamil- 
ton's relations i fz  and F '  are interpreted as canonical 
field variables and zF'G as the "Hamiltonian den- 
sity". Alternatively, Eq. (3) immediately shows the 
underlying Hamiltonian structure of  the EOM. 

Since the dynamical system (5) represents the mo- 
tion of the curve it is plausible that this system can 
also be derived from a Hamiltonian. To this end let 
us start from the desired result and work our way 
backwards. The goal is to obtain a Hamiltonian of 
separable variables (although separability is not nec- 
essarily a constraint) 

H = H ( { J } ;  {O}),  

J-(JI,J2,...,JN), O~-- (O1, O2 ... . .  O N ) .  ( 8 )  

I f  this system is integrable then H=H{J} and we have 
a motion on a N-dimensional torus. At this stage it is 
possible to choose arbitrarily the form of  the target 
Hamiltonian into which the system should be 
mapped, but for simplicity we require here that the 
Hamiltonian has the form 

N 
H =  Z to, J , -  (9) 

n=l  

It should be emphasized though that the formulation 
presented here is in no way restricted to this form. 
These coordinates are required to obey Hamil ton-  
Jacobi EOMs, 

OH OH 
On= OJ,' ~1,=- O0----~" (10) 

The transformation we seek should yield Jn = J ,  ({Z}; 
{P} ) and O, = On ({Z}; {P} ). Combining Eqs. (5), (9) 
and (10) we obtain that to effect the desired trans- 
formation the following set of  equations needs to be 
satisfied, 

/ o]. oy. OH 
L = m=l ~ f m  ~- "~m gm)= ---~n mO (11) 

I oo. oo. OH O. = m = l ~ - ~ m f ,  n + ~ - ~ m g m ) = - ~ n - - - - O ) n ,  (12) 

where the r.h.s, of  these equations is particular to the 
Hamiltonian that we have chosen in Eq. (9). This set 
of equations can be written generally for any system 
in the form 

[ f ( r ) . V ] J ( r )  = w .  (13) 

In this notation f, / ,  F and to are 2N-component 
vectors, 

f -  (f~ ,f2 ..... fN, g,, ..., gN) , 

r =  (Z, ,  Zz, ..., ZN, P,,  ..., PN) 

J - -  (Jl ,  J2, ..-, JN, O1, ..., OlV) , 

( OH OH OH OH O~j~) 
¢dJ-~__ -- ..., , 

001' 002' "'" OOU' O Jr' 

and V is the gradient in the 2N-dimensional space of 
F. I f  to is a vector of  N zeros and N constants of the 
motion, as chosen in Eq. (9),  then (13) is a linear 
set and therefore has a solution as long as the opera- 
t o r f ( F )  .V has no vanishing eigenvalue. Thus, unless 
such a singular ease occurs, this set of equations does 
have a solution for {J(F)} and {O(F)}. This solu- 
tion, when it exists, defines a specific transformation 
from the chosen Hamiltonian to the problem of the 
dynamics of  the singularities, and hence to the origi- 
nal growth problem. The existence of such a solution 
immediately points to the integrability of  the system. 

Having discussed the general ease, it is useful to 
consider a specific example of  a class of  initial con- 
ditions where the solution to the set of  equations ( 11 ) 
and (12) indeed exists and can be obtained explic- 
itly. Assume that at t = 0 the initial surface can be rep- 
resented by 

2 
y(s, 0 ) = e  u -  ~ R j l n [ e i ~ - p j ( 0 ) ] ,  (14) 

j= l  

where 

Rj = ( - 1 y{ [P] (0)  - Z~Z (0) ] / [P, (0) -P2(O) 1} 

and IPl], IP2[, [Zll < l .  The surface y(s, t) can be 
shown to retain this form for any later time by sub- 
stituting for Pj and Zj their time-dependent values. 
This form is valid for any number of  singularities 
when - Rj is replaced by the residues of  the analytic 
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map F. The growth problem consists now of finding 
the dynamics of two zeros at Z~(t) and 
Z2 (t) = - Z~ (t) and two poles at P~ (t) and P2 (t). The 
trajectories of these singularities can be found by 
substituting into (5) 

(.2Z~_~11 Q1 Q ~ P I P 2 ~ 
--Zl =Zl ZI -P1 gl -P2 Z 2 } '  

• (Q1 Ql QI PIP2~ 
-PJ=PJ -~1 + Pj-Z---~ Ps+Z, ~ 1. (15) 

It can be shown [ 9 ] that for the map to be analytic 
this 2 × 2  system has to obey the relation 
ZI + Z2 =PI +P2. This immediately simplifies the 
EOMs to the form 

d Z2 = 2P, ez( 1 - 2K) 
dt 

d p : =  P j  [PIP2 + (p2 +Z2)K]  (16) 
at z 2 

where K-(1 -Z~P ' f ) (1 -Z~P~) / (1 - IZ~14) .  I 
choose the initial conditions such that I PA0)l is 
smaller than I Zl (0) I and also arg( I Pjl ) =arg( I Z A ). 
This choice is inconsequential to the exact solution 
below and for the purpose of the present discussion. 
For the opposite choice, IPA0)l>lZ~(0)l ,  the 
growth process is stable (namely, no cusp will form) 
and the solution holds to t~oo. The unstable case is 
chosen to emphasize the thrust of this paper that the 
system is integrable until the EOMs loose their valid- 
ity regardless of whether this occurs at a finite or in- 
finite time• 

A rather tedious manipulation of Eqs. (16) yields 
that the following is a constant of the motion, 

1 
J j -  Z2_p  2 +~j=cons t ,  (17) 

where ~j= ~ In [ ( 1 + p2) / ( 1 - P])  ]. These constants 
we can immediately identify as the action variables. 
By substituting for Z 2 from (17) and employing some 
algebra the solution for p2 is found, 

Q 

I . (18) 
2d~ 

t=½ ln[P] ( J j -~s )  s ] -  t anh4~( j j_~)  2 

Using relations (17) and (18) we obtain the solution 
for ZI in a similar form. From the EOMs it can be 
verified that from the above initial conditions the ze- 

ros propagate towards the UC faster than the poles, 
and hence the solution exists as long as the singulari- 
ties are within the UC. Several stages of the growth 
are shown in Fig. 1, where the surface evolves from 
mildly oval into an eye-shaped structure. In the 
mathematical plane the evolution consists of the poles 
and the zeros moving radially towards the UC. 

It should be noted that the above treatment as- 
sumes a unity factor in front of the map F. In fact 
there should also appear a purely time-dependent 
prefactor which takes care of the total area of the 
growth increasing linearly with time (the assumption 
is that the flux into the growth is constant in time). 
By setting this prefactor to unity the surface is effec- 
tively rescaled at each time step, which is why in Fig. 
1 sections of the boundary seem to retreat with time• 
The evolution of this prefactor can be very simply in- 
corporated into the formulation, but for clarity it has 
been omitted here. 

Since we have now solutions in the form of Eq. 
(18), 

t=lrj, F-(Z1,Z2, . . . ,Zu ,  P1 ..... PN), 

we can use Eqs. (11 ) and (12) to find the action- 
angle variables in terms of  the original coordinates. 
From the integrals of motion we obtain 

(a rk)=  ~ (ajk)izj+(b[k)lej ' (19) 
Ok j=l \Cjk] \ajk] 

where a, b, c, and d are constants. These coefficients 
of the action-angle variables are required to obey 

j=l \cjk + djky-k~oj]" 

It may seem from this result that there are too many 
coefficients that can be chosen arbitrarily. But for a 
general growth these coefficients are complex and the 
requirement that the action and angle variables take 
on only real values reduces the arbitrariness to ex- 
actly four independent coefficients with possible other 
four arbitrary integers (corresponding to multiplic- 
ity of 2xi when setting the imaginary parts of the 
variables to zero). The angle variables, Ok, thus grow 
linearly with time while the action variables, Jk, are 
constants of the motion, and by transformation (19) 
we have obtained the target Hamiltonian (9). 

To conclude, I have shown here that the growth of 
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Fig. 1. The growth of the surface discussed in the text for two zeros Z~(to) =0.55 and two poles P~(to) =0.005. 

a free surface in a Laplacian field is governed by 
Hamiltonian dynamics which is integrable if (13) has 
a solution. This formalism holds until cusp singular- 
ities occur. I have shown that the surface evolves ac- 
cording to Hamilton's  equations i f F '  and z are inter- 
preted as the canonical field variables and the 
Hamiltonian density is z F ' G .  A family of  initial con- 
ditions has been analysed explicitly where integrabil- 
ity can be demonstrated, showing that at least for 
some classes of  arbitrary initial conditions relation 
(13) does have a solution. I have chosen the simple 
Hamiltonian given in (9) to illustrate how this trans- 
formation can be carried out, and have formulated 
the transformation equations for a general surface. 
Several questions still remain: (i) Is there a case 
where the operator f ( F ) - V  in Eq. (13) has at least 
one vanishing eigenvalue? And if so what is the struc- 
ture it corresponds to? (ii) How constrained are we 
in choosing the Hamiltonian so that the transforma- 
tion equations still have a solution? These and other 
questions are currently under investigation. This au- 
thor believes that the example given here represents 
only a "hydrogen model" system where direct map- 
ping to Hamiltonian dynamics is possible, and that 
such a mapping is a general property of Laplacian 
growth processes. Therefore this approach can pave 

the way towards a theory of Laplacian (and possibly 
more general) growth processes, as will be discussed 
in a later publication that is currently under 
preparation. 
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