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HIERARCHICAL STRUCTURE OF 
DOMAIN WALLS IN MAGNETIC LAYERS 

RAPHAEL BLUMENFELD 

Cavendish Laboratory, Madingley Rd,, Cambridge CB3 OHE, UK 

I discuss thin magnetic layers in the context of a two-dimensional ferromagnetic 
Heisenberg spin system. In the low energy regime it is shown that the system follows a 
Belavin-Polyakov type of equation. It is argued that unlike in traditional systems where 
these equations occur only under uniform boundary conditions, the boundary conditions 
in this case are less restrictive, allowing for a new family of solutions. These solutions 
consist of magnetic domains of spins that are oriented at relative opposite directions. The 
boundaries between regions are sharp on the continuous scale but within a domain wall 
the magnetization changes orientation continuously from one ground state to another. All 
the magnetic energy in the system is shown to concentrate along the domain walls. It is 
therefore argued that most favorable for the walls is to rearrange in a hierarchical or fractal 
fashion because such an arrangement lowers the overall energy density. It is suggested 
that this hierarchical structure of magnetic domain boundaries should be observable 
by magnetic force microscopy. Recent results suggest that such configurations may also 
dominate the structure of domain walls in magnetostrictive materials and magnetic 
nanotubes. 

Keywordr: Hierarchical structure; Domain walls; Magnetic layers; Ferromagnetic; 
Heisenberg spin system; Fractal fashion 

1 INTRODUCTION 

Two-dimensional and quasi-two-dimensional ferromagnetic systems 
have a long history as models to study magnetic systems. Recent years 
saw renewed interest in these systems due to advances in processing and 
manufacturing technology of magnetic thin films. 

Here I report recent progress in the understanding of magnetic 
domains formation in magnetic layers. The main thrust of this paper is 
the suggestion that the macroscopic configuration of the domain wall 
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238 R. BLUMENFELD 

structure should be hierarchical. The theoretical results discussed here 
bear relation to several other problems where similar mathematical 
formalism applies. For example, in systems described by the nonlinear 
sigma model, in the dynamics of spin fluctuations across anti- 
ferromagnetic spin chains, in the study of geometric phases, in string 
theory, and in the dynamics of line curves moving in three dimensions, 
to name a few. The common denominator of all these problems is that 
the governing equations have the form of the Belavin-Polyakov 
equations (BPE), with the exception of line curves moving in three 
dimensions where a more generalized form of these equations is 
involved [l]. From the practical point of view, these results have 
applications in magnetic thin films such as Giant Magnetoresistive 
(GMR) materials for microactuators and microsensors. There also 
seems to be relevance to the nanotubes technology when these systems 
are augmented with magnetic properties. This latter application has 
been suspected following recent results that the theoretical analysis can 
be made to apply to nonplanar geometries [2]. 

2 THESYSTEM 

We start from a discrete spin system whose Hamiltonian is 

H = -JC S,,, . S,, (2.1) 

where J is a uniform scalar coupling constant, S ,  is a Heisenberg spin 
of index n, where the index runs over all possible spins, and the angular 
brackets denote summation over m and n that are nearest neighbors in 
real space. For positive values of J the system is ferromagnetic since 
the lowest energy is when S,,, and S, are parallel. The ground state is 
when all the spins point in the same direction and the entire system is 
uniformly magnetized. When J is negative the system is antiferro- 
magnetic and spins favor local antiparallel alignment, in which case it 
depends on the details of the lattice structure whether the state is 
ordered or frustrated. Here we focus on two-dimensional ferromagnetic 
systems. Although the spins are embedded in a two-dimensional plane, 
the spin vector, S, is three dimensional and is not constrained to point 
only in the plane. 
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DOMAIN WALLS 239 

At low energies above the ground state, the spins are almost parallel 
locally and the divergence from parallelism is slow over large distances, 
involving many spins. In this regime one can approximate the discrete 
system with a continuous model whose equivalent Hamiltonian is 

In 1975, Belavin and Polyakov [3] derived the equation of motion for 
this Hamiltonian, which reads 

where the subscript t stands for partial differentiation with respect to 
time. Here I would like to concentrate on the stationary solutions to 
(2.3) where the time derivative on the left hand side vanishes 

s x v2s = 0. (2.4) 

In two dimensions it can be readily shown that solutions to the fol- 
lowing equation also solves Eq. (2.4) 

s, = -s x s,. (2.5) 

3 THE STRUCTURE OF MAGNETIC DOMAINS 

To analyze Eq. (2.5) we recall that the local spin vector is normalized 
IS1 = 1 and write S in term of its two angular variables 

S = (sin Ocos 4, sin O sin 4, cos 0). (3.1) 

Substituting the form (3.1) into the vectorial equation (2.5) one obtains 
two coupled equations for 0 and 4: 

The coupled equations in (3.2) are very reminiscent of the so-called 
BPE, also known as the duality relations, e.g., in the context of 
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240 R.  BLUMENFELD 

antiferromagnetic chains and strings. There is, however, a marked dif- 
ference: In those systems the BPE are derived only under strictly uni- 
form boundary conditions on 8 and 4. This restricts the possible 
solutions to the well known n-instantons. In our case the boundary 
conditions are not important for obtaining this set of equations and 
therefore remain arbitrary at this stage. As will be seen below, the lifting 
of this constraint allows for a new type of kink (i.e., domain wall) 
solutions which are not available in other systems. 

To make progress let us first transform the angle variable 0 through 

tanh $ = cos 0. ( 3 . 3 )  

In the new variables Eqs. ( 3 . 2 )  become: 

which one recognizes as the Cauchy-Riemman relations (CRR). The 
boundary conditions on 0 transform to boundary conditions on as 
follows: 

It is convenient to represent the coordinates in complex form z = x + iy. 
Defining then the complex function 

the CRR become 

= i& ( 3 . 7 )  

and its complex conjugate. 
The solutions to the CRR are well known to be all the harmonic 

functions that contain, at  most, simple poles in the complex plane. The 
poles can be regarded as charges (of both signs). The harmonic func- 
tions can be most conveniently presented by expansions in complete sets 
of functions, such as the Fourier expansion, Legendre polynomials, 
Bessel functions, etc. The preference of expanding in one set of functions 
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DOMAIN WALLS 241 

rather than another is determined usually by the boundary conditions 
or the symmetry of the system. Assuming, for example, a rectangular 
system it is convenient to use the Fourier transform 

k=l  

where the dots stand for all combinations of hyperbolic and trigono- 
metric functions (e.g., bk cosh(kx) sin(ky), etc.). For later use we recall 
that the parameter Q is the highest wave number and therefore deter- 
mines the maximal number of the nodes that the solution can have. This 
parameter is usually governed by the boundary conditions and the dis- 
tributionof thecharges (whichcontribute logarithmic terms to Eq. (3.8)). 

While these solutions are well known and therefore look uninterest- 
ingly innocent for the variables, 1c, and 4, we have to remember that the 
physically interesting and relevant fields are 0 and 4, the two spin angles. 
Consider then an arbitrary solution for 11, which consists of a set of peaks 
and troughs in the plane. The function tanh11, takes this form and 
sharpens the transition from every trough to every peak at the position 
where a node, 11, = 0, occurs. Away from these locations tanh $ FZ f 1 
almost uniformly. Thus 0 FZ f 7 r  on most of the plane and the transition 
from +7r to -7r occurs sharply at 11, = 0. It follows that the solution 
describes aconfiguration of domain walls, located at the contours where 
Q = 0. The number and the locations of the domain walls are deter- 
mined by the boundary conditions and by the locations of charges in the 
system. A positive (negative) point charge is a particular location where 
the spin is fvred at the up (down) position, and this corresponds to 
11, = oo(-oo). The number Q is determined by the solution and gives, in 
turn, the largest number of domain walls that the system may develop. 

4 HIERARCHICAL STRUCTURE OF DOMAIN BOUNDARIES 

Having established the existence of domain wall solutions and their 
exact form, let us inspect now the Hamiltonian rewritten in the variables 
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242 R. BLUMENFELD 

This Hamiltonian resembles that of a free particle but with a field 
dependent mass l/cosh2 $. The denominator obtains its minimum on 
the lines where $ = 0 (cosh2 $ = 1) and it increases exponentially fast as 
T,$ becomes finite of either side of these lines, in which case the integrand 
in (4.1) is exponentially small. Since $ = 0 only along domain walls then 
the energy practically vanishes away from the lines that the domain 
boundaries outline in the plane. It follows that the energy is con- 
centrated along the domain walls and the total energy in the system is 
proportional to the cumulative length of the domain boundaries, 1. 

Suppose now that the system’s linear size is L so that the system area is 
O(L2).  The average energy density is 

( 4 4  
Cumulative length of domain boundaries - I 

- 
O(L2) .  

€ =  
Total system area 

If the spatial distribution of domain walls in the system is uniform then I 
also scales as O(L2) and the average energy density is independent of the 
system size. Suppose, however, that the density of walls is hierarchical or 
fractal. Namely, 

I -  LD.  (4.3) 

The number D is the fractal dimension of the domain boundaries and 
must take a value between 1 and 2, 1 < D < 2. The average energy 
density of the system is then 

This energy density decreases with the system size and becomes very 
small for macroscopic sizes. It cannot vanish altogether because the 
boundary conditions enforce existence of some domain walls, thus 
preventing the energy from falling completely to the ground state. 
Consider now what happens in realistic situations, where the system size 
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DOMAIN WALLS 243 

is fixed at a given value. The question is then what pattern will the 
domains assume upon formation via a dynamic process. From the 
preceding discussion we expect that the domains will organize in a 
structure that minimizes the energy density. Under the assumption that 
any domain forming process acts on energy minimization principle, the 
above argument suggests that the domains will arrange in a hierarchical 
structure since this gives the lowest energy. Of course, there is always 
some uniform distribution of large domains that can give the same value 
for E .  I argue that the formation of such a distribution is unlikely. The 
reason is that for such a distribution to form one needs an information 
correlation length that is of order of the system size. In other words, 
local regions in the system need to ‘know’ that in far away regions the 
domain size is the right one. During the dynamic processes the system is 
far from equilibrium and magnetically disordered. It follows that the 
flow of information (e.g., in the form of spin density waves or any other 
dynamics that are the solution of Eq. (2.3)) is hindered by localization 
and damping. This, in turn, restricts the flow of information in the 
system and the information correlation length is much smaller than the 
system size. Thus it would be awfully difficult to achieve a global uni- 
form distribution. Therefore, the system has to settle in one of the many 
(most probably even metastable) hierarchical structures. The exact 
pattern that the domain structure will assume cannot be predicted from 
the analysis presented here. Rather, it will be determined by the specific 
process that governs the formation dynamics. 

5 CONCLUSION 

To summarize, I have addressed formation and spontaneous arrange- 
ment of magnetic domains in two-dimensional ferromagnetic 
Heisenberg systems. The functional form of these solutions was found 
exactly and their nature has been discussed. I have shown that the mag- 
netic energy in the system is concentrated along the domain boundaries 
and is exponentially small away from them. 1 argued that this suggests 
that minimization of the energy in the system is equivalent to mini- 
mization of the domain walls length and went on to predict that the 
pattern that the domain walls will assume is hierarchical or fractal due 
to energetic and dynamic considerations. Such structual arrangement 
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244 R. BLUMENFELD 

can be made visible by magnetic force microscopy, as indeed seems to 
have been recently observed by Wuttig and coworkers [4]. There are a 
couple of points that need to be mentioned: 

(i) There emerges some evidence [2] that the solutions discussed here 
persist even when there is coupling between the magnetic and 
elastic properties in the layer (as in magneto-elastic thin films). 
Depending on the coupling strengths, the occurrence of magnetic 
domain walls in such systems may lead to deformations, resulting 
in structural kinks that may be visible through traditional atomic 
force microscopy. 

(ii) It has been shown recently [2] that the sharp domain wall solutions 
survive even if the system is made nonplanar, namely, when the 
plane is wrapped around a cylinder, or distorted into any other 
topology (torus, sphere). This suggests that many real-world 
magnetic systems can be used to test these predictions. For example, 
it would be very interesting to carry out an experiment on nanotubes. 
We conjecture that if nanotubes can be made magnetic then it is 
possible that such a domain structure, whether hierarchical or not, 
may be observed. Furthermore, if the nanotubes can be made 
magneto-elastic it may be possible to observe structural kinks on the 
cylinders. This, in turn, can have an enormous impact on magneto- 
mechanical control of these exotic systems, an issue that is currently 
being explored. 

Finally, it should be emphasized that the solutions discussed here are 
different from the regular instanton solutions thar usually occur when 
the BPE are involved. The reason is that in our system the boundary 
conditions are arbitrary, while in the traditional systems that follow the 
BPE the boundary conditions have to be uniform, thus restricting the 
possible solutions and eliminating the ones discussed here. 
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