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Abstract

A recent theory for stress transmission in isostatic granular and cellular systems predicts a
constitutive equation that couples the stress +eld to the local microstructure (Phys. Rev. Lett. 88
(2002) 115505). The theory could not be applied to macroscopic systems because the constitutive
equation becomes trivial upon straightforward coarse-graining. This problem is resolved here for
arbitrary planar structures. The solution is based on the observation that the staggered order makes
it possible to couple the stress to a reduced geometric tensor that can be coarse-grained. The
method proposed here makes it possible to apply this idea to realistic systems whose staggered
order is generally ‘frustrated’. This is achieved by a renormalization procedure which removes
the frustration and enables the use of the upscalable reduced tensor. As an example we calculate
the stress due to a defect in a periodic solid foam.
c© 2003 Elsevier B.V. All rights reserved.

PACS: 46.05.+b; 62.25.+g; 81.40.Jj

Keywords: Solid foams; Cellular solids; Granular materials; Stress +eld; Micromechanics; Isostatic;
Constitutive equations

Particulate and cellular materials play a major role in everyday life and are relevant
to a wide range of technological applications. Yet, the fundamentals of stress trans-
mission in these systems are not fully understood. Recent work has shown that stress
transmission in both cellular and isostatic granular systems di@ers signi+cantly from
conventional solids [1–5]. All solids in mechanical equilibrium satisfy force and torque
balance

∇̃ · �̂ + Fext = 0; �̂ = �̂T ; (1)
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where �̂ is the stress tensor, �̂T its transpose and Fext is an external loading. To
the balance equations one must add a set of constitutive equations to uniquely deter-
mine the stress +eld. In elasticity theory, these equations involve stress–strain relations
but this information is redundant for granular [1–4] and cellular systems [5]. This is
because these systems are isostatic and the intergranular and intercellular forces can be
in principle determined from statics alone. Note that this is true regardless of material
compliance. It has been shown that in 2D the conventional constitutive relation can be
replaced by an equation of the form∑

ij

qij�ij = 0 (2)

with Q̂ a tensor that depends only on the local geometry. Several empirical [3] and
mean-+eld [4] proposals have been put forward for the macroscopic form of Q̂ and
a recent theory gave the speci+c dependence of this tensor on microstructural details
[1]. In a further development an exact mapping was found between trivalent cellular
solids and isostatic granular systems which enabled to extend the theory to solid foams
[5]. For brevity, the following will be discussed in terms of the latter. The tensor Q̂
is symmetric and is de+ned as

Q̂ = 1
2 �̂

−1(Ĉv + ĈT
v )�̂ ; (3)

where �̂=
( 0
−1

1
0

)
is a �=2-rotation matrix and

Cijv =
∑
c

ricvR
j
cv : (4)

Here i; j are Cartesian components, v denotes a vertex of the cellular solid, the de+-
nitions of the vectors r̃cv and R̃cv are given in Fig. 1, and the sum runs over all the
cells c that surround vertex v. The only contribution to Q̂ comes from the parallel
parts of R̃cv and r̃cv and therefore Q̂ is a measure of the net rotation of the triangle
around vertex v relative to its immediate environment. It is also the net deviation of
the quadrilaterals formed by the self-dual r̃-R̃ pairs (see Fig. 2) from rhombi. The
geometric interpretation of Q̂ can be best seen in terms of P̂ = �̂Q̂�̂−1. Using vector
algebra, P̂ can be rewritten in terms of the vectors s̃cv and t̃cv of Fig. 2 as

P̂v = 1
2

∑
c

(̃scṽscv − t̃cṽtcv) : (5)

The antisymmetric part of each term in C̃v can be written as Acv�̂, where Acv is the
area of the quadrilateral whose diagonals are R̃cv and r̃cv. The area associated with
vertex v is then Av =

∑
c Acv and the total area of the system is exactly

Asys =
∑

v Av.
Although the +rst-principles derivation of Q̂ encouragingly supports Eq. (2) this

equation can only be useful if Q̂ can be coarse-grained to yield a macroscopically
valid equation. This, however, proved to be non-trivial [1] seriously impeding the
application of the new theory. This problem is resolved here.
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Fig. 1. The vectors r̃cv and R̃cv shared between vertex v and cell c. r̃cv connects two neighboring wall
midpoints and is one edge in a clockwise-directed triangle around vertex v. The vector R̃cv points from the
center of triangle v to the center of cell c.

Fig. 2. The quadrilateral of area Acv whose diagonals are r̃cv and R̃cv. The vectors s̃cv and t̃cv appear in
the symmetric tensor P̂. Note that t̃cv = −̃scv′ and therefore a sum over P̂ inside cell c vanishes identically
irrespective of the shape of the cell.

Coarse-graining of constitutive properties has been studied in many contexts. The
conventional approach is to integrate over small-scale degrees of freedom, leaving the
constitutive properties dependent on large-scale coordinates [6]. The procedure is to
choose a lengthscale L above which the d-dimensional medium appears statistically
homogeneous. The entire system is then regarded as made of basic units of volume
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Ld and the constitutive property is averaged within a unit, giving a mean characteristic
value. This value is then used in the constitutive equation, which is subsequently
regarded as applicable to scales larger than L. This straightforward approach fails for
the constitutive equation (2) because the mean value of the tensor Q̂ vanishes, giving
a trivial identity for macroscopic scales. To see this consider a part of the system �
of area A� and boundary 9�, which consists of N� vertices. The average of the tensor
P̂ in � is

P̂� =
1

2A�

∑
c;v∈�

(̃scṽscv − t̃cṽtcv) : (6)

From Fig. 2 we see that if v and v′ are neighbor vertices then t̃cv = −̃scv′ in the cells
c that they both border. This means that the terms in sum (6) cancel out in pairs for
cells that are fully enclosed in � and only terms along the boundary 9� contribute.
It follows that P̂� diminishes with size as 1=

√
N�. Therefore, a simple area average

of Q̂ vanishes on large scales irrespective of the microstructural characteristics. To use
Eq. (2) for macroscopic systems and keep Q̂ as the correct geometrical descriptor
we need to develop a coarse-graining method that goes beyond straightforward area
averaging.
The key to the resolution of this problem comes from the observation [1] that in

systems possessing a staggered order (stagger-ordered systems, SOS) Eq. (2) can be
rewritten in terms of only half the degrees of freedom. A staggered order arises when
it is possible to label all the vertices + and −, such that each vertex has neighbors
of only the opposite sign. This requires that all the cells in the network have an even
number of edges. Such networks can be partitioned into +=− vertex pairs, each of area
Apair=A+

v +A
−
v . The local force moment on the triangle around v is Ŝv=

∑
v′ r̃vv′×f̃ vv′ ,

where v′ are the neighbors of v, f̃ vv′ the forces that triangles v′ exert on v, and r̃vv′
are the position vectors of the contacts between v and v′. By de+nition, the local stress
at vertex v is �̂v = Ŝv=Av. Let us de+ne the mean stress and the stress di@erence of a
pair, respectively, as �̂m = (S+ + S−)=Apair and �̂d = (S+ − S−)=Apair . �̂m is the stress
+eld, coarse-grained over a scale of two vertices and �̂d is the local Luctuation whose
average must vanish on larger scales. A manipulation of Eq. (2) for both the + and
− vertices gives

(Q̂+ + Q̂−) : �̂m + (Q̂+ − Q̂−) : �̂d = 0 ;

(Q̂+ − Q̂−) : �̂m + (Q̂+ + Q̂−) : �̂d = 0 :

In an area average of these equations the term linear in (Q̂+ + Q̂−) vanishes, as
discussed above, and �̂d vanishes from its de+nition. This renders the +rst equation a
trivial identity. It also means that the second term in the second equation consists of a
correlation of two small quantities and is therefore negligible relative to the +rst term.
Thus only the +rst term of the second equation survives the averaging. Furthermore,
the vanishing of the average of Q̂+ + Q̂− means that the average of Q̂+− Q̂− is equal
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Fig. 3. The frustration around an OEC (shaded) surrounded by even-edged cells. Labeling the vertices around
it alternately by + and − leaves two neighboring ‘frustrated’ vertices with the same sign (v and v′). Starting
from a neighbor of v and labeling the next shell (thick lines), leaves another frustrated pair lying adjacent
to the +rst one. Continuing this procedure results in a line of such frustrated vertex pairs emanating from
the OEC, the +rst three of which are shown. This line can be capped only by encountering another OEC
along its path.

to that of 2Q̂+. Thus, on a lengthscale of several cells

Q̂+ : �̂m = 0 : (7)

This relation has the same form as the original constitutive equation and is therefore
a coarse-grained version of it. Its advantage is that, unlike Q̂, an area average of Q̂+

does not vanish identically 1 and so the problem of coarse-graining is resolvable in
SOS.
Unfortunately, most foams are not SOS and cannot be conveniently partitioned into

+=− vertex pairs. The staggered order breaks around cells with odd numbers of edges
(odd-edged cells, OECs) which cannot perfectly accommodate alternating signs around
them. At these locations the system is ‘frustrated’ much like a system of antiferro-
magnetically coupled Ising spins. To resolve the coarse-graining problem for general
systems we then need to address the issue of frustration.
Let us consider +rst one OEC embedded in a region of cells with only even num-

bers of edges (e.g. Fig. 3). Starting from an arbitrary vertex, v, we label the vertices
alternatingly + and − around the OEC in the clockwise direction. The last vertex, v′,
has the same sign as the +rst vertex v. Apply now the same procedure to the +rst shell
of cells surrounding the OEC, starting from the neighbor of v and going clockwise,
as shown in Fig. 3. Since there are only even-edged cells around the OEC then this

1 Note, however, that this average should vanish on scales where the system is statistically isotropic.
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shell must also contain a frustrated pair of vertices and, by construction, this pair lies
adjacent to v-v′. Repeating this process shell by shell outwards results in a line of
frustrated pairs of vertices emanating from the OEC. Three pairs along this line are
shown in Fig. 3 highlighted by ellipses. This line of frustrated pairs extends to the
boundary of the system unless it encounters another OEC along its path, in which case
it terminates.
This suggests a procedure to isolate the frustrated pairs in general systems and

remove their e@ect: (1) Identify all the OECs in the network; (2) partition the OECs
into nearest pairs; (3) following the above procedure, draw a line of frustrated vertex
pairs between each pair of OECs avoiding intersection between lines. Except along
these lines, the system is ordered, i.e., it can be completely partitioned into pairs of
+=− vertices. The choice of nearest pairs on the second step minimizes the total
number of frustrated pairs.
The frustration is removed by renormalization. Each frustrated pair of vertices along

the frustration lines (say v and v′ in Fig. 3) is regarded as one supervertex. These
vertices (the equivalent of grains) are pressed against each other anyway and therefore
this does not alter the original external forces on the pair. The renormalized pair
geometric tensor is de+ned as Ĉpair = Ĉv + Ĉv′ and hence P̂pair = P̂v + P̂v′ . Since
this tensor determines the stress through Eq. (2) it remains to show that this operation
leaves the stress +eld outside the supervertex intact. Using Eq. (5) and inspecting
Fig. 2 note that the vectors s̃cv′ and t̃cv, which connect the v-v′ contact point to the
center of cell c, cancel out in this sum. So do their counterparts in the opposite cell and
so P̂pair is independent of this contact. This also means that the stress tensor becomes
independent of fvv′ . The remaining s̃ and t̃ vectors surround the supervertex as if it were
a regular vertex and the geometric tensor outside the supervertex remains una@ected.
Therefore, the renormalization operation indeed leaves the stress +eld outside this pair
unchanged, as required. Another convenient feature of the procedure is that the area of
the supervertex is Apair = Av + Av′ , exactly corresponding to the sum of the adjacent
areas of the two original grains (see Fig. 4) and so the volume of the system is
preserved. In granular packings this procedure is the same as actual fusion of the pair
of grains. Once all the frustrated pairs are renormalized the system becomes fully SOS
and the above coarse-graining can be used. This procedure then makes it possible to
upscale the constitutive Eq. (2) in general systems.
To illustrate the method, consider the structure shown in Fig. 5. It is a honeycomb

lattice in which one cell has been made into an octagon at the expense of two neigh-
bors that are reduced to pentagons. Except around the pentagons the structure is SOS
with P̂ vanishing due to the hexagonal symmetry. The structural defect gives rise to
a Luctuation in the constitutive properties, which we wish to determine. Following the
procedure outlined above, we renormalize the two pentagonal cells by fusing the two
pairs enclosed by ellipses. Summing over the Q̂-tensors of the positive vertices gives

Q̂defect =

(
− 3

10

− 4
√
3

5

− 4
√
3

5
− 3

2

)
and, after some algebra, the constitutive equation reads

�11 + 5�22 +
16√
3
�12 = 0 : (8)
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Fig. 4. Fusion of a frustrated pair of vertices renormalizes away the contact point between the triangles. The
area of the renormalized vertex (shaded) is Af =A1 +A2, which is the coeMcient of the antisymmetric part
of the renormalized geometric tensor Ĉf = Ĉ1 + Ĉ2. The common vectors s̃ and t̃ cancel and therefore the
symmetric part of the renormalized grain is independent of the vectors that connect the contact point
to the centers of the cells that surround it. Therefore, the stress +eld, that is coupled to the microstruc-
ture via the symmetric part of Ĉ is una@ected by the fusion.

Fig. 5. A honeycomb cellular structure containing a defect which consists of an octagonal cell straddled by
two pentagonal cells. The coarse graining is over all the positive vertices but only those near the defect with
irregular areas (shown shaded) have a +nite P̂.

Combined with Eq. (1), this relation gives the stress on the scale of the entire
defect.
To conclude, this communication has addressed the application of the microscopic

theory for stress transmission in trivalent solid foams and marginally rigid granular
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assemblies to macroscopic lengthscales. Under conventional coarse-graining the equa-
tion that couples the stress +eld to the microstructure becomes useless and an upscal-
ing method has been proposed to overcome this problem. The method consists of
fusion of frustrated vertices/grains, leading to a renormalized system that is fully
stagger-ordered and whose structure is characterized by a suitably renormalized ge-
ometric tensor. The renormalized system can be partitioned into two subsystems, much
like antiferromagnetic sublattices, and this enables coarse-graining of the constitutive
equation. The method makes it possible to extend the microscopic theory to macro-
scopic systems, paving the way for calculations that are useful for engineering pur-
poses. An example of a localized defect in an otherwise perfect honeycomb lattice has
been solved explicitly. This solution can be used to give the Green function for the
stress +eld in generally disordered lattices but this issue will be discussed in more
detail elsewhere. Since the microscopic theory does not resort to stress–strain relations
then neither does the upscaled macroscopic version. This obviates the problem of the
structure-property relationship as we know it in these systems. Speci+cally, there is
no need to take the conventional approach where a relationship is sought between the
local structure and elastic constants, which are subsequently coarse-grained. Rather, the
problem reduces to the direct coarse-graining of the structural tensorial descriptor Q̂.
The new method also makes it straightforward to predict stress concentration in cellular
materials and relate the occurrence of ‘hot spots’ to local microstructural defects. This
is expected to improve the prediction of failure in advanced materials as well as to set
new goals for material processing methods to manipulate microstructural characteristics
in order to avoid such vulnerability.
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