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The critical temperature Tc in high temperature superconductors is proposed to be governed by the geometrical correlations 
between carriers. A model is put forward for these correlations and the dependence of Tc on the doping x in the phase diagram of 
L%_x(Sr)xCuO4 is derived near T=0. The model links T~ explicitly to the observed fraction of diamagnetic phase p(x). It ex- 
plains the observed opposite curvatures of Tc (x) and p(x) for heavy doping and agrees with other existing observations. 

The exhaustive effort invested in the study of high 
temperature superconductors has led to an increase 
in the understanding of these compounds. Never- 
theless, there are still many gaps in the jigsaw puzzle 
that these systems represent. In particular the form 
of the boundary Tc (x) of the superconducting phase 
in the T(temperature)-x(doping concentration) 
plane, proved to be very elusive. All these materials 
can be described in terms of weakly coupled two-di- 
mensional (2D) planes [ 1 ], and here the compound 
La2_,(Sr)~CuOa(LSCO) is taken as a representa- 
tive example. It has been recently proposed [2 ] that 
geometrical correlations between the planar holes in- 
duced by doping, play a central role in the deter- 
mination of the phase diagram. Specifically, it has 
been proposed that the pairs are bound together by 
an excitation and its anti-excitation, each of which 
occupies not much more than one plaquette in the 
underlying antiferromagnetic 2D square lattice of 
copper atoms. The pairs exist in a mixture of two real- 
space states that occupy, respectively, two adjacent 
and next adjacent plaquettes in the plane. This state 
was found to give a planar density of oxygen holes 
Xo ~ 0.15, which corresponds to the doping concen- 
tration when the critical temperature Tc is maximal. 
In this picture when the global doping matches this 
value the plane is completely covered with overlap- 
ping pair excitations. For the purpose of the present 
discussion overlap of pair excitations is the vehicle 

through which superconductivity appears and hence 
this maximal coverage of the plane yields in prin- 
ciple an entirely superconducting system. This ac- 
counts for measurements of highest diamagnetism at 
Xo [ 3,4 ] as well as for observations of phonon soft- 
ening when T is reduced towards T¢ in this range 
[2,5 ]. Each oxygen hole that is added onto the plane 
at this stage pushes in between pairs and overcrowds 
them. The forced proximity of more than two holes 
disturbs the pair excitations, destroying locally the 
carrier of the supercurrent and thus suppressing the 
local superconducting order parameter. So if locally 
x ( r )  >Xo, a small domain around r goes normal and 
ceases to belong to the superconducting phase. Fur- 
ther doping results in increasingly large islands of 
such normal domains even at T= 0. When x exceeds 
a critical value Xmax, the spread of the normal phase 
is large enough to prohibit any superconducting path 
between the boundaries of the system. Using per- 
colation ideas [6] this situation occurs at the per- 
colation threshold Pc, namely, when the supercon- 
ducting cluster ceases to span the system. 
Consequently the value of Xmax could be calculated, 
Xm~x ~ 0.3 [ 2 ], in good agreement with' experimental 
observations [4,7,8] (site- or bond-percolation 
models give Xm~x = 0.29 or 0.32, respectively). 

Hypothesising that for X<Xo at T = 0  supercon- 
ductivity appears when a superconducting cluster 
(SC-cluster) of paris spans the system (i.e., when 
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the area occupied by pairs exceeds a fraction p,: o f  

the entire available surface) and assuming that the 
percolat ion model  still applies,  enabled to calculate 
the lowest doping at which superconduct iv i ty  can be 
observed,  .Vmm~0.075 [2].  This is in reasonable 
agreement with heat capacity [4] and other  mea- 
surements  [7,9].  

The appl icabi l i ty  of  the percolat ion model  usually 
hinges on the geometrical  structure of  clusters being 
quenched.  For  x>_.v,, this is true within an extended 
range of  t ime scales, due to the low mobi l i ty  of  pairs 
in the normal  background [10] which keeps the 
boundar ies  of  the SC-clusters fairly stationary.  This 
low mobi l i ty  is not to be confused with the super- 
current,  which corresponds to the non-diss ipat ive  

t ransport  of  pairs within the S( '-cluster.  For  x<.vo it 
was argued that single holes may be less restricted 
than pairs in the normal  background [10] ,  and so 
some correlat ions may develop in the format ion  pro- 
cess of the clusters. Nevertheless, this picture can still 
be appl ied (see below for discussion on this poin t ) .  

Thus this model  reproduces the three numbers -rm,,,, 
&, and x . . . .  quite accurately. Encouraged by this, the 
aim here is to deduce the functional form of  the To(x)  
line in the T--x phase diagram of  LSCO near T = 0 .  

The underlying idea is that when the plane is only 
part ial ly covered by the SC-cluster there are chan- 

nels through which the supercurrent is forced to flow. 
These channels narrow down when .r approaches .Vmm 
(from above)  and x ..... ( from below).  So to destroy 

superconduct ivi ty ,  at a given x, thermal  f luctuat ions 
need only disconnect  these channels rather than turn 

the entire cluster normal.  The closer is the p lanar  
structure to Pc, the narrower  are these supercon- 
ducting bridges and the smaller  is the tempera ture  
needed to upset them. Reciprocally,  increasing the 
temperature ,  larger regions go normal  until, at T~,, 
the typical size of  a locally upset region becomes 
comparable  to the width of  the smallest channels that 
bridge between larger superconduct ing blobs. When 
this happens those bridges are "cu t"  and the bound-  
aries are no longer connected by the SC-cluster. This 
leads to appearance  of  finite resistance, whose onset 
defines T,, for our present purpose.  

We first discuss the regime X>Xo and find an 
expression for T~(.r) and then cont inue with a slight 
modif icat ion to describe the regime X<Xo. The log- 

ical steps of  the arguments  presented here arc the 
following: 
(1)  Determine  the typical l inear size ~1 of the su- 
perconduct ing area thai thermal f luctuations can up- 
set at tempera ture  T: 
(2)  Express the dependence  of  the typical width w 
of  the narrowest  bridges between superconduct ing 
blobs on the area fraction of  pairs p and relate p to 
the doping concentrat ion .v 1o find w(.v): 
(3)  7~, is the smallest tempera ture  needed to turn 
these bridges normal,  hence equate w(.v) with ~ at 
7; to obtain T~(.v). 

We first consider  step I. As the tempera ture  is 
raised thermal  f luctuations begin to agitate the pairs 
in an a t tempt  to disrupt  them. Since the normal do- 
mains in this regime are denser in holes than the SC- 
cluster, the fluctuations actually press pairs in until 
at some temperature ,  comparable  to the binding en- 
ergy between holes, a substantial  part of  the pairs be- 
gins to collapse. To est imate the l inear sizc of  a typ- 
ical normal  domain  ~ in this range of  temperatures  
we have to est imate the energy invested in breaking 
the pairs in it. The planar  concentra t ion of  the holes 
in the superconduct ing phase is n =.vo/(  2d 2 ), where 
d is the separat ion between Cu a toms in the under- 
lying lattice. The total energy needed to upset a do- 
main of  size (~)-" is then roughly kT,~nEb(?,~ )~. 
where k is Bol tzmann 's  constant  and Eu is the char- 
acteristic energy needed to destroy one pair. This 
gives 

~,l ~ "v' . k  7 / & , t : h  d ~  ( ) 

Having es t imated ~i we move to step 2 that poses 
a purely  geometr ica l  question: how does the typical 
width of  the narrowest  bridges depend  on the geo- 
metrical disorder  in the plane? This question has been 
hardly addressed in the context of  the percolat ion 
model,  mainly due to the difficulty to define prop- 
erly this width,  and so presently it has no definite 
answer [11 ]. In our context the locally narrowest 
neck may be identif ied by the locally highest 
( super)  current  density. When T =  0 and x is close to 
.r ....... the SC-cluster is only barely connected and the 
fraction of  area occupied by the pairs is jus t  above 
p~. It is reasonable to assume that, as most quanti t ies  
near the percolat ion threshold [6] w(p)  is a power 
of  the geometrical  order  parameter  [p-p,.[, 
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w(p) ~ Ip-pcl  ° , (2) 

where 0 is a (currently unknown) critical exponent. 
At Tc w(p) is comparable to ~v, which gives upon 

comparing eqs. (1) and (2) Tr ip )~  Ip-pcl  2°. To 
obtain To(x) one needs to find first p(x ) ,  whose 
general properties we now consider. The overall dop- 
ing concentration can be written as an average over 
the normal and the superconducting parts 

x=p(X)Xo+ [1 - p ( x )  ]x . ,  (3) 

where xn is the mean doping concentration of the 
single holes in the normal domains (the holes need 
not be uniformly distributed within these domains). 
In particular, at XmaxP (Xmax) =Pc and 
Xn(Xma×) =XH2X, increases with x, while the concen- 
tration within the SC-cluster remains constant Xo, 
since no further in-cluster doping is possible without 
overcrowding pairs and suppressing the supercon- 
ducting order parameter. Thus we can use eq. (3) to 
gain insight on the behaviour of p ( x >  Xo). 

Had the concentration xn been independent of x, 
with all added holes used to disrupt pairs, p would 
have decreased linearly with x. But, besides destroy- 
ing pairs, doping also compresses the holes in the 
normal domains, and hence p(x )  decreases slower 
than linearly. Therefore, i fp(x)  is well-behaved be- 
tween Xo and Xmax we have O~p<0 and 0 ~ p >  0. Only 
when x. saturates at its highest value XH for x>  Xm~., 
and further doping only eats into the pairs clusters, 
does p(x )  settle into a constant linear decay, the rate 
of which is determined below. Similar considera- 
tions can be applied to x,: As x increases x, follows 
monotonically Oxx, > 0. Differentiating eq. (3) with 
respect to x we obtain 

1 = (Xo --Xn)OxP+ (1 --p)OxX,, (4) 

from which O,X. and 8x,x, can be analysed. Consid- 
ering the regime x>  Xmax (4) yields 

Oxp(x> Xma x ) = --  1 / (XH--Xo) • (5) 

The above information, combined with the values 
p(Xo) = 1 and p(Xmax) mPc, yields the qualitative be- 
haviour of p(x ) .  Knowing its curvature we can set 
an upper bound on p in this regime, which can be 
written in the form 

( l - p c ) / ( x ~ , ~ - X o ) > ( p - p ~ ) / ( X m , x - x )  . (6) 

Substituting the numbers from measurements 
[4,7] and from ref. [2] into eq. (6) yields that the 
r.h.s, is bounded by a number around 4. A good ap- 
proximation for p(x )  is then by the form 

p ( x ) = p c +  ( 1 - p c ) [  Xmax-X ] a 
LXmax --  X0] 

- p c + K ( x m a x - x )  ~ , (7) 

with a the only available parameter (to be deter- 
mined below from experimental data). To give the 
above right sign of 0xxP we have a > 1. Using eq. (7) 
in relation (3) one can solve for x. to get 

x . ( x ) = X o + ( X - X o ) / [ 1  

- p c - X ( X m a x - X )  a] • ( 8 )  

From eqs. (2) and (7) we obtain the typical behav- 
iour of the width of the critical necks 

w[p(x)  ] ~ (Xm,x--X) ~'° . (9) 

Upon comparing with ~T (step 3), we finally find 

rc  = To [ (Xmax_X) / (Xmax__Xo) ]2¢x0 , ( 1 0 )  

where To is, in principle, a constant to be determined 
by measurements. 

Let us now turn to experimental evidence to de- 
termine the powers a and 0. The fraction of the su- 
perconducting phase p asserts itself through mea- 
surements of the Meissner diamagnetism, which have 
already been reported [3,4]. Assuming that the ox- 
ygen holes distribute uniformly amongst Cu-O 
planes, the diamagnetic fraction should be a direct 
measure ofp(x) .  Inspecting these measurements, one 
can see that although Tc(x>_Xo) curves downwards 
(implying 0 < 2 a 0 <  1), p(x )  has an opposite cur- 
vature ( a > l ) ,  conforming with the above argu- 
ments. Figure 3 in ref. [4] (p is termed there f~) 
shows such an effect, although no attempt has been 
made to connect between the two curvatures. Ana- 
lysing that plot we can deduce that (to the available 
accuracy) a ~ 2 . 0 + l  and 2a0~0.8_+0.5, yielding 
0~0.2_+1. A similar analysis carried out on the 
noisier data shown in ref. [ 7 ] gives 2aO~ 0.7 _+ 0.2, 
again in agreement with the above. 

Since the form of w(p) proposed in eq. (2) is valid 
only for p not too far from Pc, eq. (10) should hold 
only in the vicinity of Xmax. Nevertheless, to obtain 
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a simple expression for T~.(.v) and to check the ex- 
tension of  the val idi ty of  this descript ion,  we ignore 
this l imi ta t ion and upon extending eq. ( 10 ) down to 
.v,,, the coefficient To becomes T~(x, ,)~ 40 K. 

The foregoing discussion focused on the doping 
regime .v>__v,,. We now extend it to .%,,, <_v<_v<,, us- 
ing the general relation eq. ( 3 ), which holds in both 
regimes. As holes are added to the dilutely doped 
system more and more pairs are formed until, at .v,,,,.. 
a spanning SC-cluster appears.  Fur ther  doping may. 
m principle,  lead both to increasing concentrat ion of  
single holes within the normal  domains  .v,, (now 
.v,~<.v,,) and to expansion of  the superconduct ing 
part. Thus we first have 0,p > 0 and 0,.v,, >-0. Further.  
if.v,, were constant  then p would have increased lin- 
early with .v. but since in principle .v. may also in- 
crease then part of  the doping may go into the nor- 
real domains ,  causing p to increase slower than 
/im'arO', implying its, p_< 0 (equal i ty  corresponds to 
constant .vn ). The same argument,  applied to .v~ yields 
0,,.v._<0. All this l imits the freedom we have in de- 
scribing p(.v) and we again assume a general power 
law form 

V ( .v ) = V< + ( I - p~. ) [ ( . r  - l , , , , . ,  ) / ( 1 - ) 'm ,,~ ) ]/~ 

where for brevity we have defined y-.v/_vo and 
.l',,,,=.vmm/-v,,=p<.. Again the only avai lable param-  
eter is the power# ,  whose value is de te rmined  below 
from experimental  data. Subst i tut ing into eq. ( 3 ) an 
explicit  expression for .vn can be obtained,  but it is 
of  no immedia te  interest here. 

Note that due to the low densi ty of  normal  do- 
mains around the clustered pairs in this regime, ther- 
mal f luctuat ions upset pairs now by separat ing them 
rather than by squeezing them in as for :,>.v<, (This  
difference has significant ramif ica t ions  which are be- 
yond the scope of  this paper,  and are current ly under  
stud}'). Nevertheless,  to calculate qr we can follow a 
procedure s imilar  to the above, replacing E b by a dif- 
ferent characteris t ic  energy, which results again in 
~T~x/Cl . Repeat ing the steps that led to eq. (10) ,  we 
obtain now the corresponding expression for 7~ in 
this regime 

T~.= Ti [(y-p~) / ( l -p~)]-~#"  (11)  

where 7'~ is a constant  to be de termined.  To evaluate 
]J we refer again to the data  in ref. [4] that show a 
fairly accurate l inear increase in the fraction of  the 

diamagnet ic  phase with v, f l = l . 0 2 0 . 1 .  This linc- 
arity has another  significant implicat ion discussed 
below. Reanalysing the data from ref. [4] we find 
2#0=0.24 +0.1, giving a value for 0 that agrees 
within the error bars with that found near .v  ...... . An- 
alysing similarly the data of  ref. [9] we find 
2fl0=0.36+_0.1, giving again 0=0.2_+0.1. In prin- 
ciple, there is no reason why the prefaclors  T~ in eq. 
( I 1 ) and 7~, in eq. (10)  should be related. Never- 
theless, to check the range of  val idi ty of  the preseni 
picture, as done for 7],. we take the exper imental  
value 7~ = 7'~.(.v,,) ~ 4 0  K. The T~(.v) line that results 
from expressions ( i 0 )  and (11) with 0 = 0 . 2  on both 
sides, is plot ted in fig. 1 together with data  from ref. 
[4] lbr comparison.  The agreement  is reasonable,  
considering the usual large fluctuations in the prep- 
arat ion of  samples of  LSCO. Expecting the curve to 
be inadequate  away from .V.,,n and .v ....... we find that 
the curve deviates from the data only for 
0 .11< .v<0 .18 ,  implying a surprisingly extended 
range of  validity.  

Before concluding let us discuss the val idi ty of  the 
assumpt ion of  quenched structure in the plane. For 
.x>.v. it is plausible that this is the case due to the 
" 'pressure" of  the single holes in the normal  do- 
mains, which restricts the pairs to the SC-cluster. 
Namely,  the boundar ies  of  the SC-cluster can be con- 
sidered practically stalionaD'. In the regime .x < &, one 
might expect some mobil i ty  of  the single holes in the 
normal  domains  due to the large free volume avail- 
able (e.g. by the mechanism proposed in ref. [21. 
which is available to single holes but not to paired 
holes),  which may effect the picture. Randomly  
quenched clusters and single holes permit  using 
l~(.v,,~,.) =p~., while high mobi l i ty  allows dipolar  at- 
t ract ion between the SH excitat ions to effect clus- 
tering and reduce p(.v ...... ). This reservation gains m 
impor tance  with increasing temperature .  The line- 
ari ty o f p ( x ) ,  evidenced by the measurements  in ref. 
[4] indicates that .v,, is practically constant  within 
an extended range above-v,,~m (see eq. ( 3 ) ) .  This 
supports  the idea that single holes in the normal  do- 
mains  are mobile  [ 10] and diffuse to pair  (at least 
on the t ime scales of  the measurements  ). It thus sub- 
stantiates the assumption in ref. [2] and here that 
practically all single holes pair  for X~.V,mn. But al- 
though single holes may move, the pairs, once 
formed, have ve~ '  low mobi l i ty  in the normal  back- 
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Fig. 1. The To(x) curve that results from expressions ( 11 ) and (12) (dotted lines) together with data from ref. [4] (points with error 
bars) for comparison. The parameters used are 0=0.2, a=2 .0 ,  fl= h0 and To-- T, =40 K. 

ground. Hence the boundaries of the clusters can be 
considered stationary even in this regime. It must be 
made clear that the mobility discussed here is not 
related to the transport of pairs within the SC-clus- 
ter, which is associated with the superconductivity. 

Nevertheless, the mobility of single holes may in 
itself affect the results in the sense that the topolog- 
ical structure of the clusters that form in the plane 
may not follow a percolation-model pattern. Thus 
our model comprises a convenient modification by 
k e e p i n g  p(Xmi.)=po, and letting mobility modify 
only x, forx close to Xm~n. This is justified by the close 
estimate the model yields for Xmi, and for T~ in its 
neighbourhood. 

To conclude, a well-defined model has been pro- 
posed to study the effect of geometrical correlations 
amongst pairs in the Cu-O planes on the critical 
temperature. The qualitative, as well as the quanti- 
tative results agree with the available data reasona- 
bly well, but more data is needed to pinpoint the val- 
ues of the exponents accurately. The model presented 
here links explicitly the (previously unclearly re- 

lated) diamagnetic fraction and To(x) and also ac- 
counts for the opposite curvatures of p(x> Xo) and 
Tc(x> Xo). It should be emphasised that the depen- 
dence of the width of the critical bridges on the su- 
perconducting fraction is a property that is governed 
mainly by the underlying geometry, rather than di- 
rectly relating to superconductivity. As such it can be 
found from studies that are independent of the prob- 
lem at hand (e.g., the percolation model, or some 
variation of it). Also note that if the same geomet- 
rical model applies both near Xmi n and x . . . .  the value 
of 0 should be identical near both the intersects of Tc 
with the T= 0 axis. This enables to test the model by 
examining To(x) near these points independently, as 
well as by comparing to a tangential study of the pure 
geometrical problem. The temperature dependence 
of ~v. on the other hand, may differ between the two 
regimes, due to: 
( 1 ) the different densities of single holes surround- 
ing superconducting domains, which leads to differ- 
ent interactions between the excitations in the plane, 
and 
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( 2 ) t h e  d i f f e r e n t  m e c h a n i s m s  by  w h i c h  t h e r m a l  f luc-  

t u a t i o n s  u p s e t  t h e  pa i r s .  T h e s e  m a y  in p r i n c i p l e  

c h a n g e  t h e  p o w e r  o f  ( . v / . v , , - p ~ )  in 7~(_v) n e a r  v ....... 

bu t  a n a l y s i n g  t h e  d a t a  in refs .  [ 4 , 7 , 9 ] ,  s u c h  a d i f  

f c r c n c e  c o u l d  n o t  be  d e t e c t e d .  It s h o u l d  be  s t r e s s e d  

t h a t  t h e  p a r a m e t e r s  u s e d  to  p lo t  fig. 1 a r e  n o t  ad -  

j u s t e d  to  fi t  t h e  d a t a  a n d  a b e t t e r  f i t  c a n  be  p r o v i d e d  

(e .g . ,  by  7 ; , = 4 0  K,  T , = 4 2  K a n d  0 = 0 . 1 8 ) .  N e v e r -  

t he l e s s ,  t h e  a g r e e m e n t  f o u n d  by  u s i n g  e x p e r i m e n t a l  

d a t a  is g o o d  e n o u g h  e v e n  w i t h o u t  a d j u s t i n g  t h e  

p a r a m e t e r s .  
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