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Explicitly exact solutions for waves 
in a family of nonlinear media 

R a p h a e l  B l u m e n f e l d  ~ 
Cavendish Laboratory, Madingley Road, University of Cambridge, Cambridge CB3 0HE, England, UK 

Exact wave solutions are found for the electromagnetic field inside a family of strongly nonlinear dielectric media, in 
which the amplitude of the displacement field is a power of the external electric field. The time period of oscillation 1/w, is 
shown to be linear in the spatial period 1/k, which allows for a particular standing wave solution in a finite system. The 
velocity of propagation along trajectories of constant field in space-time coordinates is found exactly and is proportional to 
a power of the amplitude of the local field. This leads to shock-wave-like solutions. 

A nonlinear response of media under the ap- 

plication of an external field is abundant in na- 
ture, and usually occurs when the applied exter- 
nal field is sufficiently strong. In a strong non- 

linear medium the nonlinearity appears  as the 
leading mode  of behaviour,  to distinguish from 

weakly nonlinear materials,  where the non- 
linearity is a small correction to a predominant  
linear response. The latter case enjoys many 
analytic and numerical studies in the literature. 
In contrast,  the response of strongly nonlinear 
systems is much less investigated, and exact re- 
suits are notoriously hard to come by. Here  I 
consider dielectric systems that follow: 

D(r, t) = elE(r, t)/el ~ E(r, t ) ,  ( l a )  

B(r,  t) = tx H(r,  t) , ( lb )  

where e, #,  E(r,  t), B(r, t), D(r, t) and H(r,  t) 
are,  respectively, the dielectric permittivity, the 
magnetic permeabil i ty,  the electric field, the 
magnetic  inductance, the displacement field and 
the magnetic field. The rescaling scalar e has the 
same units as the electric field and is introduced 
to take care of the dimensions. Its magnitude 
should be determined by microscopic mecha- 
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nisms, and it will be assumed unity and conse- 

quently omit ted in the following for simplicity. 
The power  law relation between the field and the 
response has been found to yield to exact analy- 
sis, and was therefore employed to study static 
propert ies  of nonlinear conducting networks [1] 

and both homogeneous  and disordered dielec- 
trics [2,3]. A unique solution to Maxwell 's equa- 
tions has been shown to exist only for /3 > - i  
[2], while /3 < - 1  many metastable solutions 
were discovered [4]. 

Concentrat ing on the regime/3 > - 1 ,  I discuss 
here the t ime dependent  field within such media. 
I show that Maxwell 's  equation admit oscillatory 
solutions for E and H,  and their explicit forms 
are derived. I find the temporal  and spatial 
frequencies of the resultant waves and show that 
they are related linearly. I discuss the energy 
flow and give an explicit form for the energy 
density and Poynting's vector. Finally the ve- 
locity of propagat ion of a signal is addressed. It 
is shown that the characteristic lines in such a 
medium are not straight, but for oscillatory solu- 
tions may rather  oscillate around the straight line 
in space - t ime  coordinates. 

Consider a semi-infinite space - ~ < x < ~ ,  
- ~  < y < ~ and 0 < z < ~, occupied by a charge- 
neutral ,  nonconducting and nonlinear dielectric 
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material ,  that satisfies the constitutive relations 

(1). A monochromat ic  electromagnetic wave, 
propagat ing in the positive z-direction is incident 
on the x - y  plane at z = 0 . My first aim is to find 
the coordinate-  and t ime-dependence of the re- 
sponse that develops inside the nonlinear 

medium,  which satisfies Maxwell 's  relations 

in their original directions and mutually perpen- 
dicular within the nonlinear medium for z > 0. 
The directions of the response fields D and H 
follow those of E and B, respectively. One can 
now combine eqs. (2) and use (1) to eliminate 
the magnetic field, which gives an equation for 
the magnitude of E:  

V × H = O,D/c.,  (2a) 

V x E = - O , B / c .  (2b) 

Without  loss of generality one can align the x 
and y axes in the directions of the orthogonal 
incident fields, such that E; ( z  = 0--, t) = 

E;(0 , t) x and B; ( z  = 0 , t) = B;(O-,  t) y ,  where 
x and y are unit vectors in the x and y directions. 
The  boundary conditions at z = 0 consist of con- 
tinuity of the tangential components  of E and H, 

so 

E(O, t) = E,(O, t) + E,(o,  t) , 

H(O, t) = Hi(O,  t)  + Hr(O, t ) ,  

where the subscript r stands for the reflected 
wave.  For z < 0 it is a textbook exercise to show 
that 

H,((I-, t) = ( e o / ~ ) " 2 E , ( O  , t) , 

= - ( ~ , , / ~ )  E,(0 , t) .  H,(0- ,  t) ,:2 

So at z = 0 + we have for the magnitude of the 

fields 

x / ( ~ # . ) E ( o  +, t) + H(O +, t) 

= V ( e o / t ~ ) E i ( O - ,  t )  + H i ( O  , t )  . 

The above defines unambiguously how the fields 
should match at z = 0 .  The matching of the 
t ransmit ted wave at a boundary z = W > 0 for a 
finite medium is similarly simple. 

From Maxwell 's  relations it is easy to see that 
the nonlinearity in (1) does not disturb the orien- 
tations of E and B, and these fields must remain 

a = E  = , , , -  a . ( I E I ' E ) ,  where v 0 = c / x / - ~ .  

(3) 

To find a special solution for (3) let us assume 
that E ( z ,  t) is separable into a product of a 
spatial and a temporal  independent functions 
that can be written in the form 

E ( z ,  t) = R ( z )  T( t )  I 'I~+'l (4) 

This separation yields a class of solutions that 
is of importance for finite systems, and also gives 
insight into the nature of a propagating signal 
discussed below. Substituting (4) into (3) and 
dividing by (R ~ + 1T 1:c ~ + ~ I) yields two indepen- 

dent  equations for R and T: 

a=:R : - K I R I ~ R ,  (5a) 

a,,r:-K ilrl (5b) 

where K is a constant which relates the two 
functions. Here  K will be assumed positive, but 
it is easy to convince oneself that for K < 0 eqs. 
(5) give decreasing power law solutions. These 
are analogous to the traditional exponential 
decay in the linear case. This issue is discussed 
elsewhere in more detail [5]. 

The spatial function R can be solved for by 
quadratures:  multiply both sides by O_R and 
integrate to obtain 

(a=R) 2 + A[RI ~+2 = u=, (6) 

where u: is a constant of integration and A =- 2 K /  

(/3 + 2). Eq. (6) can be regarded as an energetic 
relation describing a non-dissipative motion of a 
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particle in a potential well. The first term on the 1. 
LHS of (6) resembles a kinetic energy and the 
second - a potential term. For /3 > 0 ( -  1 </3  < 0.8. 
0) the potential well is steeper (shallower) than 0 .6  
the parabolic form of the familiar harmonic oscil- 
lator (which corresponds to /3  = 0). So (6) must 0 . 4  
accommodate  oscillatory solutions. First note 

0 . 2  that when the kinetic term vanishes, the poten- 
tial term is u s, which immediately gives the 
amplitude of R, 

(a) ~ ~ - - - -  
p = -1/2 

I I i i 2 I 
0.5 1 "1.5 2 .5 

kz 

a R = ( u z / A )  1/(13+2) (7) 

Correspondingly, the amplitude of O~R is 1/2 U z • 

Eq. (6) can be solved for z in the form of an 
indefinite integral over R: 

f dR' 
u~ t z -  z0) = -+[1-  (A/u~)IR'I~+z] 1'2 ' (8) 

where z 0 is determined by the boundary condi- 
tions. Changing variables to ~ = ( A / u ~ ) I R I  ~+2 

ones gets 

( A l u z ) l i ( ~ + 2 ) .  1,21_ 
u z ~ , A  - -  ZO) 

~1 [ 1 1] 

- / 3 + 2  ~ / 3 + 2 ' : 2  ' 
(9) 

where ~c(a ,  b) (0-< ~'-< 1) is the incomplete 
beta function [7]. By expanding the integrand in 
(8) it can be seen that R is linear in (z - z0) near 
z - z  0 = 0 ,  while near the maximum in 
R, Rma x - R - ] z  - Zmax] 2. These behaviours are 
independent  of /3  and generalize the linear case, 
when R is sinusoidal. R ( z )  is shown in fig. 1 for 
/3 = - ½ and 1, in the first quarter of the period. 
The field in the rest of the period is a mirror 
image of that shown and is facilitated by the 
occurrence of both signs in the integral (8), 
combined with the possibility of both signs for R' 
in the denominator  in (8). The period of oscilla- 
tion is [ 4 / ( / 3 + 2 ) ] ~ ( 1 / ( / 3 + 2 ) ,  1), where 
~ ( a ,  b ) =  ~¢=l(a,  b) is the usual beta function 
[6]. This period is the analog of the 2"rr for/3 = 0. 

I (b) 

O.B 

0.6 

0.4 /~ 13=1 

0.2 

kz 

Fig. 1. The solutions for (A/u~) ~/l° ~2)R. (a) 3 = - ½, and (b) 
/3 = 1. The values of k on the abcissa are scaled such that the 
period is 14/(~ +2)1 ~[1/(~ +2), ½1. 

For later use, I also identify an analogous wave 
number  k, defined such that the period is unity 
(not 2"rr): 

~ x  1 / 2  

k = ( A / U z )  l'(t~+:) (/3 + z )u~  
4N[1/ ( /3  + 2),½] " 

(10) 

Turning to the temporal behaviour, eq. (5b) 
can be solved in the same manner as (5a) 
through multiplication by O,T and integration, 
which yields 

(O,T)  2 + A,ITI  ( '+2) ' ( '+ ' )  = u , ,  (11) 

where u, is a constant of integration and A~ --= 
Av2(/3 + 1). Similarly to eq. (6), for all - 1  </3  
(11) describes a non-dissipative oscillatory be- 
haviour in a generally non-quadratic potential 
well. The amplitude of T can be found by consid- 



10 R. Blumenfeld / Explicitly exact solutions for waves in a family o[" nonlinear media 

ering the instant when O,T = 0, which gives 

a 7, = ( u / A n )  It~+l)'(t3~2) (12) 

From (4), (7) and (12) we can now deduce the 

ampli tude of the electric field: 

i I E l l  = aRa~ ,(~+1) = HzHt 
u~(/3 + 1) 

(13) 

Exactly as above,  eq. (11) can be inverted to 
solve for the time t 

(Al/U,)it~+tl<.it~+2) /3 + 2  
/3 + 1 u,(t - t()) 

= + ~ , ( / 3  + 1 1) 
- / 3 + 2 ' ? .  ' ( 1 4 )  

where ~ l -  (A l/Ul)lT] ~t3~ i)<(~+2), and t() is some 

initial time. When T is expressed in terms of t, 
relation (14) yielos the expected oscillatory be- 
haviour with a period of [4(/3 + 1)/(/3 + 2 ) ]  x 
3 ( ( /3  + 1)/(/3 + 2), ~). This period also reduces 
to 2-~ when/3 = 0, as expected. The frequency of 
the oscillation can be found from (14): 

w = ( A  /.-,(~+,)i(~+2) 1,'2/ooj3(/3 + 1 1) 
, .u , j  u, / 3 + 2 ' 2  " (15) 

In the linear case the ratio w / k  is significant as 
it gives the dispersion relation and the phase 
velocity, therefore  it is of interest to consider it 
for our case. Using eqs. (10) and (15) yields 

(1 l) 
°° /k=E'~e12X/ -~+lv°~3  / 3 + 2 '  2 

,> 
+ 2 ' 2  ' 

(16) 

which reduces to the usual v 0 in the linear case as 
it should. Expression (16) allows for a spectacu- 
lar interpretat ion:  Since E 0 and/3 depend neither 
on t ime nor on spatial coordinates w is exactly 
linear in k, with the linearity coefficient depend- 

ing on the nonlinearity paramete r  /3 and the 

ampli tude of the externally applied field E 0. 
The first implication of this intriguing result is 

that despite being strongly nonlinear, a non- 
dissipative medium can sustain a persistent 
standing wave. Namely,  pumping a wave of fre- 
quency w at z = 0  onto a medium,  confined 
between z = 0 and z = W < m, results in a stand- 

ing wave. This wave will assume definite period- 
icities that are integer multiples of the basic 
period,  exactly as in the linear case. But unlike 
the linear case a simple linear combination of 
these solutions is not a solution because the 
superposit ion principle does not apply. The sec- 
ond ramification is practical and relates to the 
intensity dependence.  Relation (16) shows that 
increasing the amplitude E() of the incident wave 
at z = 0 decreases (increases) the phase velocity 
for /3 > 0 ( -  1 < /3  < 0). Thus one can modulate  
the wave number  k of such a standing wave by 
varying the amplitude E o rather than the fre- 
quency w of the source. While it is not unusual 
to find that nonlinearity couples frequency and 
ampli tude,  it is not every day that one can find 
an exact relation between the two, rather than a 
truncation of some expansion in a small pa- 
rameter .  

So the electric field inside the nonlinear 
medium oscillates in space and time, with the 
oscillating functional form being the inverse of 
the incomplete beta function with respect to its 
index. Regarding boundary conditions, we note 
that for the calculation to hold first the incident 
wave at z = z.  has to be prearranged such that 
it follows the same form as R ( z = z . ) T ( t =  
to) ~'(~+~). If this is not taken care of one may end 
up with a mismatch at the boundary leading to a 
possible dispersion at z = 0 +. Since the superpo- 
sition principle cannot be applied in our 
medium,  such a situation complicates the analy- 
sis. Secondly, the reflected amplitude at z.) 
should equal the incident. 

Next let us consider the behaviour of the 
magnetic  field H(z ,  t) within the medium. Re- 
writing eqs. (2) in terms of the functions R and 



R. Blumenfeld / Explicitly exact solutions for  waves in a family o f  nonlinear media 1 ! 

T, integrating and using (5), (6) and (11), H is 
found explicitly: 

8 
H =  +- - -  OzR O,T 

c K  

 (uzu,) ''2 
= -+ ~ / [ 1  - (a/u~)lRl~+2l 

c K  

x V [ 1  - (m ,/u,)l T l ( ¢ + 2 ) ' { ~ + ' q  • (17) 

The expressions within the square roots are the 
canonical wave solutions to the energetic eqs. (6) 
and (11), which vary with z and t between 0 and 
1. The amplitude of H is then the prefactor, 
which can be identified, using (13), as 

2 ~/e(~_/+ 1) p(/3+2)/2 
H ° -  /3 + 2  ~o • (18) 

Having found the explicit forms of the electric 
and the magnetic fields, I now discuss the energy 
stored in the field and its flow in the nonlinear 
medium. Consider Poynting's vector 

S = (c/4rr)  E x H .  (19) 

The divergence of S can be easily calculated in a 
general medium [7] 

div S + ( H . O , B  + E . O , D ) / 4 ~ r  = O, 

and in the case of the nonlinear constitutive 
relations (1), can be written as 

div S + O,U = 0 ,  (20) 

where 

1 ~,[/3 + 1  lgl +2 + ½t~lnl2~] V;5 (21) 

the energy density is exchanged between the 
magnetic and electric fields. 

It should be emphasized that by assuming a 
separable solution, the above discussion focused 
implicitly on a standing, rather than a propagat- 
ing, wave. So let us now turn to consider the 
propagation of a signal in such a medium. In the 
linear case the fields E and H can be written as 
functions of the reduced variable x = z +- rot, 

which shows that a signal of a well defined 
unique frequency will propagate at the speed of 
light v 0 both forward and backward in the corre- 
sponding medium. The question is can one iden- 
tify in our case a quantity analogous to v 0. Let us 
assume that there exists such a velocity v~. The 
field E can then be written as a function of the 
reduced variable ~ = ( t -  to) - (z  - Zo)/V~ (to 
simplify the notation only forward propagation is 
considered).  The first partial derivatives of E can 
be rewritten as 

E 
¢ 

O z E =  v~[1 + (z  - z o ) d e ( 1 / v ~ ) E '  ] ' 

E 
~ 

O,E (22) 
1 + (z  - zo) d E ( 1 / v ~ ) E '  

where d E = d / d E  represents derivative with re- 
spect to the explicit dependence on E and where 
E '  is the derivative of E with respect to the 
reduced variable £. Assuming that [1 + 

(z - z0) de(1/vt~ ) E ' ]  does not vanish we have 

O z E  = - ( 1 / v ~ )  O¢E , 

which, combined with the identity OzE/ 

O,E = - l ( O z / O t ) e  , simply states that 

(Oz/Ot)  e = u  s . (23) 

is exactly the energy density in the system. It 
should be stressed that although eq. (20) holds 
for any nonlinear system, U need not, and gener- 
ally does not, coincide with the energy density in 
the system. Thus within a period of oscillation 

Namely,  u~ is the velocity along the trajectories 
of constant field E in the z - t  plane. I now claim 
that 

=  01el + 1,  (24) 
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and proceed to prove it by showing that this 
expression solves Maxwell's equations. Noting 
that 1/v2~ = (~/c  2) d~D and using (2a) one has 

(25) 

Using (23) in (25) and changing variables further 
yields 

H = (c/p,) f dE/vt~, 

which can be checked by differentiation with 
respect to time and comparing with (2b). Ex- 
plicitly, this relation yields for the magnitude of 
H 

H = 2\ /( /3 + 1)e/u IEI J2E (26) 
/ 3 + 2  

which coincides with (17) and (18) up to a phase 
shift. Expressions (26) also shows that for a 
propagating signal, H is in phase with E (rather 
than in antiphase as for a standing wave), exactly 
as in the linear case. 

Further,  this calculation shows that any func- 
tion of ~ solves Maxwell's equations for E and H. 
This generalizes the linear case result, where any 
function of z -  rot is a solution, depending on 
the initial conditions. 

So by writing E in terms of ~: the problem is 
reduced to being described by one variable 
rather than two. This reduction may seem cum- 
bersome due to the dependence of ~: on E 
through v~, but it is still useful as it provides 
insight when analysing the stability of the form 
of a propagating signal in such a medium. This 
issue will not be addressed here [5], but I will 
only remark that a signal propagating with a 
velocity that follows (24) may evolve into a 
frontal or rear shock-wave-like form [8]. 

The mean velocity of propagation (v~) ,  can 
be found in two ways: One is by averaging 
(25) directly over z and t, which gives 
(u~) = u(,(E /3/2)/(/3 _~_ 1 ) X / 2  Eot~/2. Another  

way is to consider the propagation of the energy 

flux through the media. The general relation (20) 
has the form of a continuity equation and, when 
averaged over z and t, constitutes the conserva- 
tion of energy in the system. The velocity of 
propagation is then simply (S )  / ( U ) .  Using S 
and U for the previous case of separable solution 
yields 

2(/3 + 2 )  (E# '2~ ' )  E(~ ~..2 
(vt~)= ( / 3 + 4 ) ( / 3 + 1 ) , <  2 v, (E#+2) 

which varies with the same power of the field 
amplitude as in the first method. As expected, 
this power vanishes in the linear case, leading to 
the familiar field-independent constant velocity. 

Thus, v~ indeed represents a local and in- 
stantaneous velocity of propagation of the solu- 
tion in the medium and it varies with the spatial 
and temporal  coordinates, tracing the variation 
of the field. Information can be transmitted by 
this solution, e.g., by introducing a perturbation 
at some t and z. Although, unlike in the linear 
case, the propagation of a general perturbation is 
difficult to analyse, this perturbation will distort 
the field, and such a distortion can be detected at 
another  location at a later time. This information 
propagates with the average velocity, and hence 
the instantaneous velocity is not the most signifi- 
cant quantity to the passage of information over 
extended distances. 

To conclude, I have analysed the electro- 
magnetic response of a strongly nonlinear dielec- 
tric medium. I have presented exact and explicit 
wave solutions to Maxwell's equations. The fre- 
quency of oscillation ~o has been shown to be 
linear in the analog of the wave number k, which 
indicates that such a medium can support a 
standing wave. The proportionality coefficient 
o~/k has been shown to vary as a power of the 
intensity of the incident wave, which allows the 
wave length inside the medium to be modulated 
by changing the intensity of the source wave, 
rather  than varying its frequency. The energy 
flux and Poynting's vector have been solved for 
and discussed for these solutions. The velocity 



R. Blumenfeld / Explicitly exact solutions for waves in a family of nonlinear media 13 

derivative Ozldt  along trajectories of constant 
field in the z - t  plane has been found to be a 
power of the field intensity for any general solu- 
tion. In particular, when the field oscillates the 
velocity traces this oscillation and consequently 
the characteristic lines of constant field may also 
oscillate periodically around the straight line. 
Some points remain unclear in the propagating 
case regarding the stable form of the signal. The 
simplicity in the linear case stems from the easy 
decomposit ion of the plane wave in x = z - u0t 
into a sum of two separable periodic functions in 
kz and oJt. Such a decomposition is not available 
in the present nonlinear problem, and this ques- 
tion is currently under study. 
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