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We discuss the statistical mechanics of granular matter and derive several significant results. First, we

show that, contrary to common belief, the volume and stress ensembles are interdependent, necessitating

the use of both. We use the combined ensemble to calculate explicitly expectation values of structural and

stress-related quantities for two-dimensional systems. We thence demonstrate that structural properties

may depend on the angoricity tensor and that stress-based quantities may depend on the compactivity.

This calls into question previous statistical mechanical analyses of static granular systems and related

derivations of expectation values. Second, we establish the existence of an intriguing equipartition

principle—the total volume is shared equally amongst both structural and stress-related degrees of

freedom. Third, we derive an expression for the compactivity that makes it possible to quantify it from

macroscopic measurements.
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The statistical mechanical formalism, introduced to
describe granular materials [1–3], was expected to be a
platform for derivations of experimentally measurable
equations of state and constitutive relations. It has not yet
lived up to its full potential due to several difficulties that
traditional thermodynamic theories do not suffer from:
lack of ergodicity, uncertainty over the identities and num-
ber of degrees of freedom (DOF), and the difficulty to
realize a simple analog of a thermometer—a ‘‘compactom-
eter.’’ While these problems reflect more on the application
of the theory rather than on the theory itself, a more serious
concern has arisen from recent suggestions of an absence
of an equipartition principle [4,5] in agitated systems. Here
we derive a number of significant results. First, we show
that the correct phase space consists of both structural and
force DOF, thus calling into question much of the results in
the literature obtained from either ensemble alone. Second,
we show the existence of an equipartition principle in two-
dimensional static systems. Third, we show that, in such
systems, the compactivity can be quantified directly from
macroscopic mean volume measurements.

The initial statistical mechanical approach was based on
a volume partition function of Nð�1Þ grains [1],

Zv ¼
Z

e�ðW=X0Þdfall structural DOFg; (1)

where W is a volume function that sums over all the
possible volumes that basic volume elements can realize
and X0 is the compactivity—a measure of the fluctuations
in the ensemble of realizations that is the analogue of
temperature. The structural DOF (SDF), identified explic-
itly below, are all the independent variables that determine
the structure of an assembly of grains in mechanical

equilibrium, given the mean number of force-carrying
contacts per grain �z [6].
The partition function Zv enables almost closed thermo-

dynamics. For example, once W and the SDF have been
identified (see below), the mean volume 2D can be com-
puted. Nevertheless, Zv is unable to specify the macro-
scopic state of the system completely, since the entropy
remains only partially accounted for; it leaves out an entire
set of microstates—those of different stress states. These
microstates are described by a different partition function
Zf [7–9], an idea supported later numerically [9,10]. The

stress ensemble gives rise to the partition function

Zf ¼
Z

e
�P

��

ð1=X��ÞF ��

dfall boundary forcesg: (2)

Here �,� run over the Cartesian components x, y andF ��

are the components of the force moment function, from
which the stress ��� is derived:

F �� ¼ X
g

Vg�g ¼ X
gg0

~Fgg0
� Rgg0

� : (3)

Here the sum runs over pairs of grains in contact gg0,Rgg0

is the position of the contact point, measured from the

centroid of grain g, ~Fgg0 is the force that g0 applies to g,
and Vg is the volume associated with grain g. X�� ¼
@F ��=@S has been named ‘‘angoricity’’—a tensorial

analogue of the temperature and the compactivity
[7,11,12]—and S is the entropy, defined as the log of the
number of both structural configurations and stress states.
Note that integrating this partition function, any expecta-

tions values would be a function of all ~Rgg0
.

PRL 109, 238001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

0031-9007=12=109(23)=238001(4) 238001-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.238001


The volume and stress ensembles are treated in the
literature as independent, leading to a total partition func-
tion Z ¼ ZvZf. Consequently, results have been derived

solely from the statistics of one ensemble or the other.
Here, we challenge this view. We argue that such deri-

vations are misguided and we outline the calculation of
the correct partition function. Using the correct ensemble
we demonstrate the derivation of a number of expectation
values in two-dimensions (2D), including the expected
intergranular force distribution, and derive a surprising
equipartition principle for static systems.

We put forward the following three arguments.
1. The volume ensemble alone is insufficient to describe

the entropy of mechanically stable granular systems. A
volume ensemble implies the exact same boundary forces.
However, many-grain experiments cannot reproduce the
same grain configurations, nor the precise forces on every
boundary grain. Only global boundary stresses can be
controlled, i.e., averages over boundary force components.
Thus, the statistics of the boundary forces must be taken
into consideration.

2. The stress ensemble alone is insufficient to describe
the entropy of mechanically stable granular systems. The
stress ensemble comprises a fixed granular configuration
to which all combinations of boundary forces are applied.
The ensemble is subject to constraints, e.g., that the total
boundary stresses are fixed. Such a system cannot be
realized experimentally in very large assemblies (albeit
possible in numerical experiments). Indeed, any integra-
tion over Zf remains a function of the SDF.

3. The volume and stress partition functions are inter-
dependent, Z � ZvZf. This statement follows from the

above two arguments—correct calculations of expectation
values must be based on a combined ensemble of all struc-
tural arrangements and all boundary forces. Specifically, this
is a consequence of the explicit dependence of both the
volume function in Zv and the force moment function in Zf

on the SDF.
The above arguments hold in any dimension and we

proceed to illustrate them explicitly in 2D. Consider an
ensemble of 2D N-grain systems (N � 1), each of mean
contact number �z. The systems are in mechanical equilib-
rium under M external compressive forces, acting on the
boundary grains. We disregard body forces in the absence
of which ‘‘rattlers’’ can also be ignored, as they do not
affect the stress states in static piles.

It was proposed to use ‘‘quadrons’’’ [13,14] as the
elementary volumes, both in two and in three-dimensions.
These are space-tessellating (generically) quadrilateral ele-
ments (Fig. 1). The quadron is constructed on two vectors
as its diagonals: ~rq connects contact points around a grain

in the clockwise direction and ~Rq extends from the centroid
(mean position) of the contacts around the grain to the
centroid of the contacts around neighbor cells. In terms

of these, the volume function is W ¼ P
qv

q ¼ 1
2 j~rq � ~Rqj

(summation implied over repeated indices) and the parti-
tion function is

Zv ¼
Z

e�ð1=2X0Þj~rq� ~Rqj YNsdf=2

q¼1

drqxdr
q
y: (4)

Here Nsdf is the number of SDF, discussed below. The

vectors ~Rq can be expressed as linear combinations of the
~rq [8] and, since the latter close loops, only N �z=2 of them
are independent [6,8], leading to Nsdf ¼ N �z. Defining the

vector ~� � ðr1x; r2x; . . . ; rN �z=2
x ; r1y; r

2
y; . . . ; r

N �z=2
y Þ, W becomes

exactly quadratic and we have

Zv ¼
Z

e�ð1=2X0Þaqp��rq�rp�
YN �z=2

n¼1

Y2
i¼1

drqi ¼
Z

e�ð1=2Þ ~��A� ~�dN �z ~�:

(5)

Here p, q run over quadrons, �, � run over vector compo-
nents x, y, and A is a matrix whose elements are

ðAÞqp�� ¼ 1

X0

�

8>>>>><
>>>>>:

aqpxx ; q; p � N �z=2

aqpxy ; q � N �z=2; p > N �z=2

aqpyx ; p � N �z=2; q > N �z=2

aqpyy ; q; p > N �z=2:

We can now evaluate Zv. Assuming a uniform measure of
the DOF and that the contribution of very large ~r magni-
tudes is negligible, (5) can be calculated explicitly

Zv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞN �z

detA

s
: (6)

The stress partition function consists of all the possible
combinations of compressive forces on the boundary
grains, ~gm (m ¼ 1; 2; . . . ;M), subject to the constraint
that the total stress on the boundary is fixed [6,11,12].
Since the configuration is presumed fixed, only boundary
forces that do not drive the system out of mechanical equi-
librium are permissible, i.e., the boundary stresses must be
below the yield surface. It has been shown [13,14] that the
force moment function (3) can be written as

q

q

c

R

r

g

FIG. 1 (color online). The vectors ~rq connect contact points
clockwise around grain g. The vectors ~Rq connect from grain g
centroids to cell c centroid. These vectors are the diagonals of
quadron q (shaded blue).
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F �� ¼ X
gc

fq�r
q
�; (7)

where fq� is the � component of a loop force of the cell
containing the quadron q (see Fig. 2). The loop forces

are defined in terms of the contact forces [13], e.g., ~Fgg0 ¼
~fc � ~fc

0
in Fig. 2, and they conveniently satisfy force

balance conditions. In 2D assemblies of arbitrarily shaped
frictional grains there are Nð�z=2� 1Þ loop forces (a conse-
quence of Euler relation), of which N=2 can be determined
from the torque balance conditions. For clarity, we next
focus on isostatic systems (�z ¼ 3); extension to hyperstatic
assemblies (�z > 3) is possible. Substituting (7) into (2)
gives

Zf ¼
Z

e�ð1=X��Þfq�rq�
YM
m¼1

d ~gm; (8)

where the integration runs over all the independent boundary
forces ~gm. Since quadrons sharing the same cell have the
same loop force (Fig. 2) and the loop forces depend linearly
on theM boundary forces, then onlyN=2 of theN �z quadron
forces are independent. It is therefore convenient todefine the

loop forces vector ~� � ðf1x; f2x; . . . ; fN=2
x ; f1y; f

2
x; . . . ; f

N=2
y Þ.

The solution for ~� in terms of the boundary forces can be
written as

�c
� ¼ Cqm

��g
m
�; (9)

where �, � ¼ x, y, c ¼ 1; 2; . . . ; N=2 runs over all cells,
m ¼ 1; 2; . . . ;M runs over all boundary forces, and C is the

N � 2M matrix. In terms of these, ~fq ¼ E ~�, where E is a
N �z� N matrix. Defining further Bqp

�� ¼ X�1
���qp, with �qp

being the delta function, we finally obtain Zf,

Zf ¼
Z

e� ~��ET �B� ~� YM
m¼1

d2 ~gm ¼
Z

e� ~g�CT �ET �B� ~� YM
m¼1

d2 ~gm:

(10)

To compute the total partition function, we need to
integrate over the combined volume-stress phase space,
dZ ¼ dZvdZf,

Z ¼
Z

e�ð1=2Þ ~��A� ~�� ~g�QT � ~�ðdN �z ~�Þðd2M ~gÞ; (11)

where we have defined, for brevity, Q ¼ BT � E � C. This
expression establishes our claim that Z is not the product
of Zv and Zf of Eqs. (6) and (10).

Integrating (11) is straightforward due to the integrand’s
Gaussian form and we use it next to calculate several
expectation values. The exponential contains a linear and
a quadratic term in ~� and, completing to quadrature and
changing variables to ~� ¼ �þ A�1Q~g, we can separate
the variables in the exponent,

� 1

2
~�A ~�� ~gQT ~� ¼ � 1

2
~~�A~~�þ 1

2
~gP ~g; (12)

where we define for shorter notation P ¼ QT � A�1 �Q.
Calculating the mean volume we obtain

hVi ¼ X0

2Z

Z
ð ~~�A~~�þ ~gP ~gÞeð1=2Þð� ~~�A ~~�þ ~gP ~gÞðdN �z ~~�Þðd2M ~gÞ;

which separates into two Gaussian integrals, giving

hVi ¼ �zN þ 2M

2
X0: (13)

This result is significant for several reasons. First, it is
independent of the details of the connectivity matrix A
and of the particular stress state. Second, it reveals a
striking equipartition principle: the mean volume is shared
equally among the �zN structural and the 2M force DOF,
each having on average X0=2. It is analogous to the mean
energy per DOF in thermal systems 3kBT=2, but we
emphasize that no energy is involved in this formalism.
Third, it quantifies the compactivity X0 in terms of mea-
surable quantities. An important consequence of this find-
ing is that it makes possible to start analyses ‘‘inductively’’
by assuming that the volume per DOF is X0=2, as done
standardly in thermal systems with the analogous kBT.
Note that using only Zv [Eq. (5)] gives hVvi ¼ �zNX0=2,
which overestimates the compactivity.
All relevant expectation values can be expressed in

terms of ~~� and ~g and hence evaluated, albeit with more
algebra,

hF ��i ¼ � @ lnZ

@ð1=X��Þ ¼
X2M
i

R��
ii

pi

; (14)

h ~� � ~�i ¼ � @ lnZ

@Aii

¼ TrA�1 þX2M
i

Tii

pi

; (15)

h ~f � ~fi ¼ ��ij

@ lnZ

@Pij

¼ X2M
i

Uii

pi

; (16)

R
q

rq
F

gg’

c’
fα

q
=f

α
=f

c
fα α

p

g

g’

p

q

c

c’

FIG. 2 (color online). fq� is the � component of the loop force
~fc, which contains the quadron q (shaded blue). The loop forces
of c and c0 give the intergranular force at the contact point that

they share, ~Fgg0 ¼ ~fc � ~fc
0
[13]. Quadron p (striped) shares the

same loop as q and hence also the same loop force.
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where R ¼ YT � CT � ET � A�1 �Q � Y, T ¼ YT �QT �
A�1 � A�1 �Q � Y, U ¼ YT � CT � ET � E � C � Y, Y is the
matrix that diagonalizes P, pi are the eigenvalues of P,
and �ij are straightforward functions of E and C. Note that

both results (13) and (16) are directly relevant to experi-
mental measurements [15,16]. These exact results do more
than demonstrate the utility of the combined ensemble,
they reveal unexpected dependences of these expectation
values on the compactivity and angoricity. For example,
h ~� � ~�i is not only proportional to X0, as one would expect,
but it also depends on X�� via a homogeneous function

(HF) of order 0. Also unexpectedly, the mean intergranular

force magnitude square h ~f � ~fi is both a HF of order 2 of
X�� and linear in X0. Yet hF ��i is, unsurprisingly, a HF of

order 1 of the angoricity and independent of X0. These
results show the significance of using both the stress and
the volume ensembles.

To conclude, we have presented three main results. First,
we have shown that the compactivity-based volume en-
semble and the angoricity-based stress ensemble are de-
pendent and need to be used simultaneously. We reiterate,
the entropy is the log of all the microstates, which include
both the SDF and the stress states—because Zv and Zf are

dependent, it is not simply the sum of the configurational
and stress entropies. This calls into question the large body
of work, obtained from either ensemble alone. We have
used the combined partition function to obtain explicitly
the expectation values of the mean volume, force moment,
distance between intragrain neighbor contact points, and
the contact force magnitude. We find, surprisingly, that hVi
depends explicitly on the force degrees of freedom, that

h� � �i depends on the angoricity, and that h ~f � ~fi depends
on the compactivity. Second, the calculation of hVi reveals
the existence of an equipartition principle—the mean
volume of static systems is shared equally amongst both
structural and force-related DOF, with each getting a vol-
ume of X0=2. This result shows that, although equipartition
is questionable in dynamic dense systems [4,5], it exists
for static ones. Moreover, since static granular systems are
the equivalent of ‘‘zero temperature’’ granular fluids, this
result gives hope that an equipartition principle may be
found for dense dynamic systems by extending dynamic
descriptions to include structural and force DOF. Third, we
have derived an expression for the compactivity in terms of
measurable quantities—the mean volume and the mean
contact number and the loading forces. A significant impli-
cation of our results is that the compactivity and angoricity
are not in themselves the conjugate variables of volume
and force moment, as previously believed. Instead, it is the

expression in Eq. (12) that represents a convolution of the
volume and force moment functions with the compactivity
and angoricity.
It would be interesting to test our analysis experimen-

tally and numerically, e.g., by constructing assemblies at
different compactivities and angoricities and examining
expectation values as functions of these parameters.
Furthermore, since the arguments establishing the inter-
dependence of the volume and stress ensembles hold in any
dimension, it should be possible to extend our analysis to
3D systems, at least numerically.
This work has been funded by EPSRC—EP/H051716/1.
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