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Synopsis

Granular materials can exist in infinitely many configurations, but under well
defined external influences and conditions can exhibit perfectly reproducible be-
haviour, and therefore must be possible to describe by statistical mechanical laws.
These must be quite different then the traditional, Hamiltonian, statistical me-
chanics since the dynamics involved in changing from one configuration to another
is dominated by friction. The ergodic, self-sustained equilibration of of conven-
tional statistical mechanics is then replaced by externally induced changes from one
jammed configuration to another. Several questions arise, which we will attempt to
answer here:
1. How does one specify a reproducible state of a granular system to which it can
return after disturbance?
2. Stress due to external fields or boundary forces will propagate through the granu-
lar medium even if the grains are perfectly rigid and cannot be strained. This means
that the stress is not related to the strain and stress-strain constitutive information
is redundant. These are termed isostatic states. Even if the grains are not perfectly
rigid the system can be isostatic. What are then the macroscopic constitutive equa-
tions required to determine the stress?
3. It appears that fluctuations of local properties are important to the stress equa-
tions. What exactly is the key quantity which fluctuates and how can the distribu-
tion of the fluctuations be found?
4. The three points above are theoretical in nature, but they must be supported ex-
perimentally. It is not difficult to generate spectacular but incomprehensible effects
in granular materials, but there are experiments that really test basic fundamental
concepts and these will be described.

§1 Introduction

Many granular and particulate systems have been studied in the literature and
there is a a wide range of parameters and physical states that they support [1].
Here we confine ourselves to jammed ensembles of perfectly hard particles. There
are extensive studies in the literature of suspensions of particles in liquids or gases



using various methods, including Stokes or Einstein fluid mechanics and Boltzmann
or Enskog gas mechanics. These, however, are not jammed and we therefore discuss
them no further. This chapter is not intended as a comprehensive review but rather
as an interim report on the work that has been done by us to date.

The simplest material for a general jammed system is that of hard and rough
particles, ideally perfectly hard and infinitely rough. To a lesser extent it is also
useful to study perfectly hard but smooth particles. The former is easily available in
nature, for example sand, salt, etc, and we prefer to focus on this case. Nevertheless,
the discussion can be readily extended to systems of particles of finite rigidity, as
has been shown recently [2]. In jammed systems particles touch their neighbours
at points, which have to be either predicted or observed. At these contact points
the particles exert on one another forces that must obey Newton’s laws. In general,
determination of the structure and the forces requires prior knowledge about the
history of formation of the jammed system. For example, if grains of sand are
poured from a narrow orifice onto a plane they will form a conical sand pile which
is known to to have a minimum of pressure under the apex [3]. If, however, the
sand grains are poured uniformly into a right cynlinder standing on a plane the
cylinder will fill at approximately a uniform rate, producing a relatively flat surface
and a uniform pressure on the plane. If one starts pouring the sand from a narrow
orifice into a cylinder and changes to a uniform source when the edges of the pile
reaches the cynlinder walls then the original sand pile will be buried eventually by
the uniform deposition and the pressure on the plane is some mixture of the two
earlier pictures. Therefore, just given a cylinder full up to a certain level by sand
is insufficient to determine the pressure at the bottom. Without knowledge of the
formation history only a detailed tomography of the individual grains can help the
investigator. This is usually the situation in the systems relevant to Soil Mechanics
and to Civil Engineering.

But there is another situation which brings the problem into the realm of physics.
In this set-up the cylinder of sand is prepared in such a way that there is an analogue
of equilibrium statistical mechanics which opens the door to ab initio calculations of
configurations and forces. Suppose the cylinder of sand is shaken with an amplitude
A and a frequency w, each shake being sufficient to break the jamming conditions
and reinstate the grains for the next shake. The sand will then occupy a volume V'
which is a function of A and w, V(A,w). Changing A to A" and w to w’ one will
get a new volume V' = V(A',w"). If we now return to A and w we will again find
that the volume is V' (A4, w). This suggests that, in analogy with the microcanonical
ensemble in thermodynamics, the sand will possess an entropy which is the logarithm
of the number of ways the N grains of sand will fit into the volume V', namely, the
conventional expression for the entropy

S(E,V,N) = log/é(E — H)d{all degrees of freedom} , (1)
is replaced by
S(V,N) = log/é(V — W)0Od{all degrees of freedom} , (2)

where W is a function of the structural characteristics of the grains that gives the



volume for any arbitrary configuration of grains and © is the condition that all
grains are touching their neighbours in such a way that the system is in mechanical
equilibrium. If eq. (2) is accepted (its derivation is given below) then one can pass
to the canonical ensemble replacing the conventional expressions on the left by those
on the right;

OF )%
T=os ¢ X=oo, (3)
F=E-TS < Y=V-XS. (4)

In these, X is named the compactivity of the system, since X = 0 corresponds to
maximum density and X = oo is where the condition of mechanical equilibrium fails
due to a topology that cannot support the intergranular forces.

Detailed studies of the density of shaken granular systems as a function of the
number of ‘tappings’ and the force of a tap were first given by the Chicago group
[4] and fit in with the above theoretical arguments.

§2 Statistical Mechanics

Consider a cylinder containing granular material whose base is a diaphragm
that can oscillate with frequency w and amplitude A. Suppose one vibrates the
system for a long time. When the vibration is turned off the granular material
occupies a volume Vj = V(A,w). Repeating the process with w; and A; gives a
volume V; = Vi(A;,w;). Returning now to w and A, it has been found that the
system returns to V(A,w). This is surely what one would expect, nevertheless the
experiment, done firstly by the Chicago group [4], is new. A different version of this
experiment has been carried out in our department [5][6]: powdered graphite, after
first being assembled, has a low density, as found by measuring its conductivity. But
as it is shaken and allowed to come to rest again it exhibits a higher conductivity.
Upon cycling the load applied to the powder one reaches, and moves along, the
reversible curve shown in figure 1. By using a simple effective medium approximation
[7] it is possible to estimate the mean coordination number as a function of the
conductivity using the relation [6][8]. We shall see later that (z) is a parameter that
plays an central role in the behaviour of granular materials.

The first rigorous theory of statistical mechanics came when Boltzmann derived
his equation and proved that it describes a system whose entropy increases un-
til equilibrium is achieved with the Boltzmann distribution. He needed a physical
specification, that of a low density gas where he could assume only two body col-
lisions, and a hypothesis, the Stosszahlansatz, that memory of a collision was not
passed from one collision to another. The question is can we do the same for a
powder?

Assuming that the grains are incompressible, a physical condition is that all
grains are immobile when an infinitesimal test force is applied to a grain, namely,
there are no ‘rattlers’ which carry no stress at all. A system is jammed when all
grains have enough contacts and friction is such that there is a finite threshold that
a force has to exceed for motion to initiate. The hypothesis we need is that when the
external force, say from a diaphragm, propagates stress through the system, then
for a particular A and w there exist bounded regions where motion results which
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Figure 1: A sketch of the density of granular matter in a vessel after being shaken
at amplitude A. Adapted from [4]



Figure 2: An example of two states of a granular system that differ only by the
positions of three particles confined to within a region, I'

rearranges the grains. We assume that outside these regions no rearrangement takes
place. An example is illustrated in figure 2, where the region I' consists of three
particles that can rearrange in several configurations, of which two are sketched.
Given the equation characterising the boundary of I' and the configuration of the
grains inside it, there must exist a function Wr that gives the volume of I' in terms
of variables which describe the local geometric structure and the boundary grains.
Since the system is shaken reversibly then under the shake Wr remains the same
Wr = Wr and for the entire system

S Wr =Y W . (5)
We can now construct a Boltzmann equation. There must be a probability f of

finding any configuration with a specification of positions and orientations. Under
a shake

dP _ ! T r/
%_/K(F,P)(pr ~TIp /™) (6)
where P consists of the probabilities f* of finding particular configurations of grains
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inside regions I' and their boundary specifications. The kernel function K contains
all the information on the contacts between grains and the constraints on the forces
expressed via d-functions.

Now we are at the same situation as Boltzmann, for the steady state will de-
pend only on §(Wr — Wrv) and the jamming specification. This is the analogue of
the conservation of kinetic energy of two particles under collision in conventional
statistical mechanics. Eq. (2) means that the probability f which satisfies (2) is

fF — eY/X—Wp/X@ (7)

Y/X :

where O specifies the jamming conditions and e is the normalisation. We can go

further and deduce the entropy of the powder by

~ [ g s, ®)

where we have dropped, for convenience, the indices I' and ['. From (4) we can
derive, using symmetry arguments in the same way that Boltzmann did,

1
/K 1nf (Hff, >1ongf, . 9)

Since K and IIf are positive definite, as is (z — 1) logz for = > 0, then

d
d—‘j >0 until f =W)X (10)

The Boltzmann approach leads naturally to the canonical ensemble, but the
result (4) was first put forward for the micro-canonical ensemble [9]

= log/é(V — W)Od{all degrees of freedom} (11)

where now W is the complete volume function and © the complete jamming condi-
tion. This form is the analogue of

= log/(S(E — H)d{all degrees of freedom}

and the usual result

F=FE-TS

becomes

Y=V-X§. (12)
Similarily, the analogue of the temperature T'= 0E/0S is now the compactivity

ov
X=—. 1
55 (13)

This discussion, which has been presented for perfectly hard grains, can be read-
ily extended to the analysis of grains that have internal energy. This leads to



S = //(5(E —H)6(V — W)0Od{all degrees of freedom} (14)

and we obtain

eS—E(0S/0E)v,n—-V(0S/0V)m,N — /e‘H(as/aE)_W(as/av)@d{all degrees of freedom}

(15)
or
eSBIT-VIX — /e’H/T’W/X@d{all degrees of freedom} . (16)
The Gibbs relation
0S 0S
S—FE|-= V| == =S—-E/T-PV=-G (17)
oE ), v oV ) o n
identifies the inverse of the compactivity as
1 oF 0S P
— == - =__ T—0. 18
v (av),, (oe),, =7 =7 X

We regard this relation, however, as a curious formal analogue rather than a useful
formula. Although in general, entropies due to internal thermal effects and config-
urational rearrangements mix, the two can be readily seperated (i.e. a heap of hot
sand will have many of the characteristics of a heap of cold sand) and we can write

S =S+ Sconf . (19)

It is interesting to note that confirmation of this ‘thermodynamics’ of granular sys-
tems by numerical simulations has used the mixed, rather than the purely configu-
rational, approach [10].

One can go further to the Grand canonical ensemble

G as as
0=S-E(=| -V|z=] -N|==| =S—E/T-V/X=Nu/T. (2
55 (58),., " (), ), =s-rrr=visurr e

Since there can be many different kinds of grains then the last term should really
be a sum over V; and p;, but we have not looked into such systems yet.

If the system is subject to an external stress on its surface, F;; then one can be
even more general and notice that S becomes S(V, N, P;;) and (now discarding E
and keeping N fixed)

08 0S8
”‘S‘V(WL. P (a?) (21)

leading to a distribution

e_SJF(V—W)%ﬂL(PM —11;5) %



where the simplest case only involves the external pressure Py, and Il is related
to the total force moment >, qins fi7i /Vgrain- This latter form is briefly discussed

below. Having named 3—5 the compactivity, we name the quantity g—i, where p is

v
the scalar pressure, angoricity. Note that in general the angoricity is the analogue
a8

of a tensorial temperature, P, -

Formula (11) was presented many years ago [9] but did not find wide acceptance.
This was partly due to a lingering skepticism and partly due to the inexistence of an
exact way to characterise the analogue of a Hamiltonian, the volume function W.
Both these problems have been resolved. First, numerical simulations have appeared
that validated the formalism [11]. The second development involved the discovery
of an exact volume function both in two dimensions [12][13] and in three dimensions
[14]. Nevertheless, to our minds, the validity of this approach was already implicit

in the experiment in reference [4].

83 Volume functions and Forces in Granular Systems

We have seen in §2 that, provided a mechanism for changing configurations
can be found, such as tapping and vibrational agitation, a reversible curve can be
achieved. This implies that a statistical mechanical approach can be applied to this
set of states in powders and that the probability distribution is governed by

eYMIXg (23)

This is already enough for a simple theory of miscibility [9] and indeed any applica-
tion of the conventional thermodynamic function exp(—(F — H)/kgT) will have an
analogue for granular systems. However, these systems also enjoy several new prob-
lems that have no equivalent in conventional thermal systems. One such a problem
concerns the distribution of forces and stresses within the granular packing. Many
of the most interesting issues concerning force transmission in, e.g. heaps of par-
ticles, lie outside the above framework, for the force exerted by a sand pile on its
base depends sensitively on how it was created. Nevertheless, there are quite a few
splendid problems that can be tackled with the analytical tools we have already.

The simplest case is probably that of perfectly hard and rough particles (‘perfect’
must be understood to not fully apply when the material is assembled, but once it
has consolidated we can restrict ourselves to the application of forces below the
yield limit). In the following we consider particles of arbitrary shapes and sizes.
Presuming that the material is in mechanical equilibrium, force and torque balance
must be satisfied. Let us consider a part of the material sketched in figure 3. We
assume for simplicity that no two neighbouring particles contact at more than one
point. This assumption is not essential to our discussion but it leads, as we shall see
in the following, to the conclusion that in two dimensions the material is in isostatic
mechanical equilibrium when the average coordination number per grain is exactly
three. Figure 3 shows a particular grain ¢ in contact with three neighbours, ¢', ¢”
and ¢". The contact point between, say, grains g and ¢’ is p% and each grain is
assigned a centroid,

1 )
== (24)

Zg P



Figure 3: A particle ¢ in contact with three neighbours ¢', ¢"” and ¢”. ¥ is the
position vector of the contact between g and ¢'; p¥ is the centroid of the contact

points; 79 points from the centroid to the contact point between g and ¢'; R99' =
9 — 99 = —R99, G99 = 9 4 7' = G99,



that is defined to be the mean of the positions of all its z, contacts. The vector

9 = (25)

points from the centroid of grain g to the point of its contact with grain g'; The
grains g and ¢’ also exert a force on one another through the contact and let f9% be
the force that ¢ exerts on ¢'. For later use we also define the vectors

fod — oo _ o — _fido (26)
and
- + 799 = G99 (27)

Balance of forces and torque moments gives

> fiu =G (28)

gl

Y =0, (29)
gl

where G9 is the external force acting on grain g. Newton’s third law requires that
at each contact

fo 4 fr=0. (30)
Various useful tensors can be generated using these vectors:
59 99' 9y’
& =) RYR]
gl
— Z f!]g
3
gl
1

=52 (g + 1) (31)

gl

o

The latter is sometimes known as the Love stress tensor. Other ‘fabric tensors’ that
have appeared already in the literature, can also be defined from these quantities,
e.g. X, 799 ng . We will show first that a simple theory of granular systems can
be expressed in terms of these tensors. However, it does not yield a complete de-
scription. A new geometric characterisation has been formulated, which makes it
possible to construct an exact microscopic theory of two-dimensional systems, and
this will be described below and in section §4.

In three dimensions the 3 x 3 tensor 5 7 has three Euler angles of orientation and
three eigenvalues, A2, \3, \3, whose combmatlons have direct physical interpreta-

tions:

25“ (A?) = 3 x (the average radius squared) (32)
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(MIA3A3 D)%) = 3 x (the average cross section) (33)
and

(AIA2Z\2) = {the average volume squared} (34)

The total volume is approximately

V ~ % 3 y/det(€9) . (35)

Thus, from €9 we can produce a first approximation to the volume function W of
the entire system

W= ngwg = %Egj \/det(€9) . (36)

More recently Ball and Blumenfeld [12] have found an exact form for W in two
dimensions, using a new geometric tensor that characterises differently the local
microstructure around grains. This geometric tensor is constructed as follows. For
lack of sufficient symbols we shall use in what follows R and 7 again but these
should not be confused with the quantities defined in equations (25) and (26). First,
connect all the contact points around grain g by vectors ¥ that circulate clockwise,
as shown in figure 4. The choice of this direction is not essential but it is important
that these vectors circulate in the same direction around all grains. The vectors
7' form a network that spans the system which we term the contact network. In
two-dimensions the grains form closed loops that enclose voids and around these
loops the vectors 7 circulate in the anti-clockwise direction. Each 7 is uniquely
identified by the grain g that it belongs to and the void loop [ that it circulates.
Next, define the centroid of loop [ as the mean position vector of all the contact
points around it

ﬁi = Z ﬁ_qg’ ’ (37)
Zl g,g'col

where z; is the number of grains around the loop and the sum is over the grains that
surround it, 9l. Finally, define a vector, R%, that extends from the centroid of grain
g to the centroid of void loop I (see figure 5),

R =p—p. (38)

The vectors B9 also form a network that spans the system and this network is
the dual of the contact network. The Ball-Blumenfeld basic geometric tensor is
expressed in terms of the outer product of these vectors

Ch =S r!'R?, (39)
l

where 7, 7 stand for x,y and the sum runs over all the loops that surround grain g.
The anti-symmetric part of each of the terms in the sum (39) can be written as

11



Figure 4: The circulation of loops of 7-vectors around grains, e.g. g, is in the
clockwise direction and around voids, e.g. [, in the anti-clockwise direction.
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Figure 5: The geometric variables around grain g. The ~network connects the con-
tact points around grains; for example, 7' is a vector connecting two neighbouring
contact points around grain g which are on the boundary of void loop /. The vector
R9 extends from the centroid of grain g to the centroid of void loop /. The pair
7 — R9 forms a quadrilateral ¢ that is the elementary unit of the structure - the
Quadron. The area of the quadron is termed Ay, = A,.
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A (PRY) = Agé | (40)
where é = (fllo) is the unit antisymetric tensor corresponding to 7-rotation in the
plane. The prefactor Ay is exactly the area of the quadrilateral of which the vectors
7 and R9 are the diagonals (see figure 5). A key observation is that the areas
of the quadrilaterals tile the entire system without holes and with no overlaps. By
summing these areas over the quadrilaterals that surround grain g we obtain the
area associated with this grain

A=) Ay . (41)

A summation of this quantity over all grains gives the area of the entire two-
dimensional system. Thus, the volume function in two dimensions is exactly

W= 4,=5"4,. (42)

Note that we could index each quadrilateral by ¢ and sum over all ¢ directly instead
of over the grains g and the void loops [. This indicates that the basic building
blocks of the system are not the grains, as one would initially expect. Rather,
each grain can be regarded as composed of z, internal elements, the quadrilaterals,
and these are the fundamental quasi-particles (or excitations, in the language of of
conventional statistical mechanics) of the system. In two-dimensional isostatic, or
marginally rigid, systems have on average three quadrilaterals per grain and we term
these elementary quasi-particles ‘Quadrons’.

To make use of this identification it is necessary to determine the distribution
of volumes A, in any given system. This information, combined with the behaviour
of the density of states © (which, as in conventional thermodynamic system, is
expected generically to vary as a power law), will make it possible to deduce the
compactivity of the system X by fitting it to an exponential form. Alternatively,
it makes it possible to estimate the density of states analytically and proceed to
calculate the partition function

z=[.[ e Pni Mg ({A,})dA, (43)

as a function of the compactivity.

The volume function (41) also makes it possible to identify a compact phase
space of degrees of freedom, the vectors 7 = 7. There are altogether 3N such
vectors, on average three per grain. These, however, are not all uncorrelated due
to the constraints imposed by the topology of the structure. Basically, we need to
determine how many independent degrees of freedom there are. A very significant
advantage of the exact volume function (41) is that it enables to pinpoint the cor-
relations amongst these vectors [14]. The key to this lies in the observation that
the topolgical constraints that give rise to the correlations originate from the irre-
ducible loops in the structure. The irreducible loops are the fundamental loops of
which all other loops can be composed, as shown in figure 6. There are two types

14



of irreducible loops: grain loops, which consist of the vectors /¥ connecting the con-
tacts around individual grains and void loops, which consist of vectors 77 circulating
around individual voids. There are N of the former, one per grain, and there are M
of the latter, giving altogether N + M dependent vectors. To determine the number
of voids M we can employ Euler’s relation [15] on the relations between edges, cells
and vertices, combined with the fact that the mean coordination number in two
dimensions is exactly three per grain for these systems. This gives that there are
on average six grains around a void. This means that there are two grains per void
loop and therefore that M = N/2. Thus, N + M = 3N/2 and of the 3N vectors
™ only half are independent. With two degrees of freedom per vector, this gives
that the phase space is 3N-dimensional. Turning attention back to the quadrons,
this argument leads to a surprising coincidence: the number of independent degrees
of freedom is the same as the number of quadrons! This suggests that in two di-
mensions one can get rid of the function ©({4,}) in the partition function (43) by
integrating over quadrons rather than the independent vectors.

Z= / P{A NN e PAagA, | (44)

where P({A,}) is the correlated probability density of the quadron areas. Various
conventional statistical mechanical methods can be used to evaluate this probability
density (e.g., cluster expansion). The simplest approximation would be to assume
that the quadrons are independent, namely,

P({A;}) =115 Py (4,) , (45)

where P,(A,) is the probability density of the area of the ¢ quadron. This form,
which resembles the treatment of the density of states in conventional statistical
mechanics, makes it simpler both to evaluate the partition function and to appreciate
the implicit approximations that have been used in the literature when the volumes
of the grains, rather than the quadrons, were taken as the fundamental particles of
the system.

At present we know of no first-principles theory that gives the form of P,(4,)
for any system. Therefore, to make progress, we are required to make assumptions
on this form. One simple approximation is to assume that the area of any quadron
is chosen from a uniform distribution of average A, that lies between a maximum
value Ag + A and a minimal value Ag — A >0

/ 0  otherwise .
In this case the partition function is straightforward to compute;
—2BA0 h(BA 3N
P sinh(BA) (47)
BA

and the mean total area of the system and its mean fluctuations are

(Asystem) TN (QAO + = — Actanh( ﬂA))

15



Void irreducible
loop

Grain irreducible
loop

Figure 6: The irreducible loops consist of two types: loops circulating grains (in the
clockwise direction) and loops circulating voids (in the anti-clockwise direction). All
other loops in the networks can be decomposed into combinations of the irreducible
loops.
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Figure 7: (a) The mean volume per quadron as a function of the compacitivity for
the density of states (the distribution of quadron areas) modelled by (46); (b) the
mean volume fluctuations per quadron as a function of compactivity; (¢) the mean
density per quadron as a function of compactivity. The plots agree reasonably well
with the experimental results of reference [4].

3N (1 A2

<5A§ystem> = 73 (F_ sinh(ﬂA)Z) : (48)
(49)

A plot of the mean area and the fluctuations as a function of the compactivity X
are shown in figure 7. Recalling that the compactivity increases monotonically with
the external agitation of the system (the tapping in the Chicago experiment), one
can invert the plot of the mean volume into a plot of the mean density (see figure
7c). The plot is in a reasonable agreement with the experimental results of reference

14].

84 The Stress Field

As mentioned already, in a packing of perfectly hard grains there cannot be
any strain involved in the determination of the stress. This observation extends to
systems of grains that are not infinitely rigid [2], as long as the condition that the
mean coordination number is three in two dimensions and four in three dimensions.
The system is then isostatic or statically determinate. The conditions for frameworks
to be statically determinate have been worked our already by Maxwell [16] and Levy
[17]. Since the forces in isostatic states are statically determinable then stress-strain
relations are redundant and therefore the equations for the stress field have to be
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closed by another type of constitutive information. The new set of equations and
their analysis is called isostaticity theory. In the following we shall make use the
symbol ¢ for the stress tensor and o;; for its components. These should not be
confused with the scalar conductivity o in section §4. The global balance equations
for the stress field in isostatic states are

%‘ZJ =g; (force balance)
oij =0j (torque balance) (50)

are the force and torque balance equations for d(d+ 1)/2 variables in d dimensions.
The stress tensor has d? components to be determined and therefore further d(d —
1)/2 equations are missing, one in 2D and three in 3D. These equations must depend
on the geometry of the contacts and we derive them below. We shall give below two
derivations. The first, after Edwards and Grinev [18], applies only to systems on
the reversible curve. Systems not on this curve, such as sand piles, depend on the
history of preparation. In sand piles the missing equations were postulated using
two main hypotheses, ‘Fixed principlal axis’ and ‘Oriented stress linearity’, each
resulting in a different equation [19]. The second derivation presented here, after
Ball and Blumenfeld [12], applies to generally quenched systems.

First approach:

Although the stress is a macroscopic variable it can be defined on the level of
one grain by using the force moment, which on averaging over the volume becomes
the stress

1

S =5 3 (£ s+ e (51)
gl

where Newton’s equations in §2 apply. We need the probability P(69) and, more
usefully, its Fourier transform

P = [ ¢ uthmiydot;. 652)
Parameterising Newton’s equations Fourier analysis we are led to [18].
P(@) = [ d¢ [ dne S allyys (90 = H95 gt o) (59
where F,,; is the external force on grain g. To solve the set of equations
597~ Crgs = o 649
we can rearrange the terms
(Cg + gg’) (ng’ _ Tg’g) + (Cg _ Cg’) (rgg’ + Tg’g) =9 — ng’ (55)
Thus, to make a simple start, assume that (¢ a2 ¢9, which gives
8,'7!] ’
9= —RY . 56
o= (56)
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This equation has the structure

a-u==b,
whose general solution for # is

—

R a
a

+(@x?), (57)

where ¢ is an arbitrary vector perpendicular to @ and «. Thus, we expect

on .,
(=5 +C" (58)
where
Gordd =G (59)

Using the force balance conditions in eq. (50) gives

00;; )

— = {9 + (small corrections) (60)
635]-
whilst the second term can be further reduced by noting that the correct num-
ber of missing equations appears when (59) is summed over ¢’ (i.e. there are still

redundancies in (59) which complicate the analysis). From the condition

S G = (61)
gl
one finds that ¢ must have the structure
g 1 g .99 g ,.99'
0ij = B Z ((bz (e A ) (62)

where the elimination of the parameter ¢ leads to the missing equations [18]. Let
us try a first approximation using the ansatz

¢! = ar?? 4+ brdY (63)
This gives the following averages

]_ 7 ’ ’ ] ’ ]
(08) = 5 X (2008 r”) + b(rt g 4 r894)) (64)
g

s

leading to the simple form

Oy Cuy+Dyy Epy+Dyy| =0 (65)
Oy  Cyy+ Dyy  Eyy + Dy,

where

Cz'j = Z R‘Zgg,Rgg’ ; Dz] = Z R‘E]‘qIS_‘;}g, 3 Ezy = Z Sigg’S‘;;g’

g’ g g’
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The crudest approximation one can use is Cyy = Cypp = a?, Cpy =~ 0, Eyj = 0,
Dy, = —Dyy = sinf, D,, = cost), where 8 is the angle between R and S. This gives

Opy — Oyy = 2tanfoy, (66)
where 6 varies in isotropic conditions within —7 < # < 7. From this expression one

is prompted do define

p=— (67)

Ogz — Oyy

which, for 6 random, has a probability density
Y

P(y) = 0 +07) (68)
Similarly, the probability density od ¢! is
Sy Yt

In sand piles, which are not isotropic, the form (66) has been successfully used to
predict stresses throughout the pile, in particular reproducing the minimum under
the apex [3].

A central difficulty of attempts to quantify granular physics is that these systems
are very disordered. This means that, even when the existence of a statistical
mechanical formalism is established, one must resort to approximations because a
detailed statistical analysis is at present too difficult. Therefore, one should aim at
this stage only for general laws. An example of such an approach is a recent exact
formulation leading to an understanding of the onset of plasticity from a marginally
rigid state of granular matter [20].

Second approach - coarse-graining a microscopic theory:

To derive the stress transmission equations on the granular level in two dimen-
sions Ball and Blumenfeld [12] have followed a different, more rigorous, approach.
Consider a two dimensional granular packing, part of which is shown in figure 4
together with its contact network, which has been defined above. The vectors 7
connecting the contacts around grains circulate clockwise and therefore they form
loops that circulate around the voids in the anti-clockwise direction. Ball and Blu-
menfeld defined for every such void loop a force ﬁ located at the centre of the loop,
which is defined as the mean position of the contacts that surround the loop. In
two dimensions every contact, say between ¢ and ¢', sits on the boundary between
two void loops, say [ and {'. The grain ¢’ exerts a force f;]g, on ¢ and this force is
parameterised in terms of the loop forces as follows

fgg’ :fl_fl’ . (70)
The sign convention adopted in this expression is that if the vector 7y, points towards

grain g then ﬁ is preceded by a positive sign and vice versa. The analysis of these
forces, rather than the original contact forces, has several advantages:
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1. By definition, the force exerted by grain g on ¢’ is f;,:g = ﬁ/ — ﬁ = —f;gu
Therefore, the loop forces satisfy Newton’s third law of action and reaction.

2. By writing the net force on grain g as a sum over its contact forces and
representing the latter in terms of the loop forces, using (70), we observe that
every loop force appears in the sum exactly twice, once with a positive and once
with a negative sign. Thus, the net force on grain g vanishes identically, which
means that the field of loop forces automatically satisfies the force balance
conditions on all the grains. For consistency, the loop forces, just like the
contact forces, must be uniquely determinate. If the system consists of N(>> 1)
grains then there are 3/N balance equations in total, two of force and one of
torque moment per grain. From Euler’s theorem on the topology of edges,
vertices and cells in the plane, we have that there are on average six grain
around a loop. Combining this with the fact that the mean coordination
number is three it is immediate to deduce that there are N/2 voids in the
packing. This gives that there are N/2 loop forces and therefore N unknowns
to determine. This is to be contrasted with the 3/N unknown components of the
contact forces in the original force field. Since the loop forces already satisfy
the force balance conditions then the loop forces can be only be determined
through the torque balance equations. Of these there are exactly N, one per
grain. Thus, there are exactly the same number of torque balance equations
as there are unknowns and the loop forces are uniquely determinate.

3. The ratio of contact forces to loop forces is 3:1 and so the field of loop forces is
three times more sparse then the original field of contact forces. Thus, a side
effect of the parameterisation is that the field of loop forces is a coarse-grained
version of the field of contact forces.

In terms of the loop forces and the vectors i the force moment around grain g is

St =31l fl (71)
l

where the sum is over the loops that surround grain g. As mentioned above, the
stress is the force moment normalised by a suitable area, and it is natural to use for
this the grain area that consists of the areas of its quadrons, A, = >°, A,. Definition
(71) is still discrete and we now need to pass to the continuum. This is done by
a piecewise linear interpolation. We shall not describe this interpolation in detail,
but an example of the interpolation of one component of the loop forces is shown in
figure 8. Let us call the resulting continuous force field F. In terms of F the original
forces are

fi=Ff,+E-VF(&,) (72)

Substituting this form into (71) the expression for the stress becomes

S =i lz Rkaij] ; (73)
] k
which can be written as
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Centre of loopn

Centre of loop |

pY Y Centre of loopm

Figure 8: The piecewise linear continuation of the field of loop forces. Around a
grain construct a polygonal surface (a triangular example is shown) whose corners
are at (pl,, o}, f{). The union of all such polygons is the continuous function F;.

Sf=> CiOkF; . (74)
1

The geometric tensor C' is exactly the tensor defined in (39) which gave rise to the
exact volume function in the entropic analysis. Thus, the tensor C provides a nat-
ural characterisation of the geometry for the purpose of both the stress description
and the entropy. Recalling that the stress tensor ¢ is the force moment properly nor-
malised by area of a grain and integrating over a small region containing few grains,
Ball and Blumenfeld were able to show that the imposition of torque balance gives
two equations. One is

(0ij) = (i)
which corresponds to the global torque balance condition (50) for the mean stress
tensor. The other condition is new

[Pets] =[Pets] (75)

2] 7

where P = %(é + C’T), is the symmetric part of C. Eq. (75) can be written

explicitly as

DrxOyy +pyy0mm - 2pxy0my =0 (76)
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and is a manifestation of the local torque balance condition. It gives a first-principles
microscopic relation between the stress field and local geometic properties of the
(generally disordered) microstructure, as characterised by the geometric tensor P.
Relation (76) is the missing constitutive equation for general disordered systems in
two dimensions.

It is instructive to consider the statistical properties of P. It has been shown [12]
that the volume average of all its components, p;;, vanishes identically regardless of
the geometrical characteristics. This means that eq. (76) couples in fact between
the stress field and fluctuations in the structural characteristics. The vanishing
of the components p;; under volume averaging presents a problem - it undermines
conventional coarse-graining methods, which rely on finite-valued mean constitutive
properties. This rather unique coarse-graining problem could, in principle, severely
limit the applicability of the theory. Fortunately, this difficulty has been resolved by
the development of a specialised procedure, based on concepts from frustration and
antiferromagnetism [21]. An important result of that procedure is that the volume
average of the coarse-grained p;; became finite. This has made it possible to treat eq.
(76) as macroscopic, opening the way to to macroscopic calculations of thestresses.

The field equations (50) and (76) couple the stress components o;;. In a next de-
velopment it was found that the equations can be resolved to yield explicit decoupled
equations for each of these variables [22]. By making the assumption that for macro-
scopic scales the gradients of the fluctuations p;; become small compared with the
gradients of the stress field, general solutions have been obtained to the decoupled
equations. The key to the analysis of the equations is a local linear transormation

(1) =mwan () (77

in terms of which the equations for the stress components become

0? 0?
G@‘%ﬁ%:m- (78)

In this expression f;; are source terms that depend only on the gradients of the
external loading and on the local geometry. The differential operator on the left hand
side is hyperbolic, confirming earlier suggestions [19] to this effect. Eq. (78) is quite
elegant in that all the stress components follow the same equation but with different
source terms f;;. The general solutions give rise to force chains that propagate
through the isostatic granular medium [22], in good agreement with experimental
observations [23]. The form (78) also made it straightforward to derive the Green
function, resolving a long debate in the literature. It has been further shown recently
by one of us that introducing corrections due to the gradients of the consitutive
parameters p;; does not affect the force chains, leading to the conclusion that, at
least in two dimensions, the force chains are a generic solution of the general stress
field equations and that they follow the characteristic curves n = u+wv and ( = u—w.

The above analysis has been limited to planar systems. A promising extension
of the theory to three-dimensions is under construction by one of us [25] at present,
using insight from the two-dimensional case. However, it is unclear at this stage
whether the three-dimensional theory would also give rise to force chain solutions.
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The experimental status is also not entirely clear. Detailed measurements by Brujic
[26] in emulsions, where the colloidal particles exert force on one another, show no
sign of force chains within the bulk. This may indicate either that force chains are
not as prominent in three dimensions as they are in two or that they are negligible
for very soft particles. Alternatively, this may point to inherent differences between
systems of particles with very little, or no, friction, which emulsions are, and systems
of particles with friction between them. Intriguingly, it has been suggested in [12]
on the grounds of theoretical stress analysis that even in two dimensions there may
exist an inherent difference between systems of smooth and rough grains, but how
could such a difference manifest in the elimination of force chains, if it does, is
unclear at present.

§5 Force distribution

There is a distinct difference between the problem of force statistics and the
distribution in configurations space. The packing of grains on the reversible branch
is governed by the function e="/X@. The forces have little effect on this distribution,
but they are fully dependent on the configurations and the external loading. For
a given structural configuration, the problem is the following. Given external, i.e.
surface, loading and internal, i.e. body, forces what is the solution of the balance
conditions (28) and (29)7

We first recall that for infinitely rigid grains there can only be a statically deter-
minate solution if the mean number of contacts between grains takes a particular
value, z.. In d dimensions this value is d+ 1 for rough grains, d(d+ 1) for smooth ar-
bitrary grains, and 2d for smooth spheres. These values are obtained upon requiring
that in mechanical equilibrium the number of force and torque balance conditions
should be equal to the number of unknown force components. Here we discuss only
the case of rough grains and we shall assume that this condition is always obeyed.
Several objections can be (and have been) raised to this assumption: one is that real
systems are never fully rigid and another is that the number of contacts in real gran-
ular packings is usually higher than z., undermining the determinacy condition. The
first objection has been shown recently to be misguided: the infinite rigidity is not a
necessary condition and packings of compliant grains that satisfy the coordination
number condition are also isostatic [2]. The second objection presents an interesting
challenge. It is true that in most real granular packings z > z. even if the grains
are very hard. In fact, a recent expeiment has identified that upon consolidation of
a granular pile the coordination number can only approach z. as the consolidating
grains approach a particular density and therefore that there exists a marginally
rigid state where z = z. [27]. The question, however, is how large above z. does
z need to be for the isostatic behaviour (and for the isostaticity theory discussed
above) to become irrelevant. Clearly, this cannot take place abruptly - adding one
contact in an otherwise isostatic macroscopic system would not suddenly change the
stress field across the entire system from a solution of the isostaticity equations to
a solution of elasticity theory. Rather, the change must be gradual. A preliminary
discussion of the manner that the change might occur has been presented recently
[22] with the conclusion that the isostatic theory only deteriorates gradually as the
number of extra contacts increases. This new understanding, while exciting, is out-
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side the scope of this presentation. To simplify the following discussion, and without
loss of much generality, we shall assume that all grains have exactly d + 1 contacts.
The generalisation to more general distributions is straightforward although more
tedious.

In a macroscopic system the forces will have a distribution that, for a homoge-
neous powder under external pressure, may be roughly like a hydrostatic pressure p:
f ~ —pii, where 7 is a coarse-grained normal, or f & p. The distribution of f has
been observed in several experiments [23] to be exponential and several theoretical
models have been proposed to explain it. The derivation of an exact equation is
quite difficult if one attempts to take into account random shaped grains or even a
random distribution of grain contacts. Therefore, the present discussion will start
generally and then we shall simplify the internal structure of the equation to allow
analytic solutions.

Let us use the tensor F¢ and in particular base the analysis on Tr[F¢] which will

relate to the average
1 N
() = 5V (79

The tensor F¥ is related to the touching grains g1, g2, g3, g4 via Newton’s equations
and therefore its probability density satisfies

P(F?) = [ 6 (Fr— Tl Fo)) 1P (Fo)dFe) @ (7)) (80)
where ® is a set of d-functions that fix the relationships of the variables F'9%. We can
then use the crude approximation that FY is linearly related to F'9 with coefficients
\9i

1 1 d
P(F :/ / s(F— S NF o (W)), [P(F)are] . (81
A (o >R Y R O P
The Fourier transform of this expression gives
P(K) = / / & ([\]) 1y [P (1K) dn?] (82)

The limits 0, 1 originates in the definition of F' above. The simplest approximation
is to put ® =constant, which gives

dQ _ Q°
— = — 83
dKk K¢ (83)
where P(K) = dQ/dK. Solving for ) and differentiating we obtain
1
PE) = TseginyaaD - (84)
In two dimensions the inverse transform gives
t
P(F) = Constan Fe-F/p (85)

p2
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whilst in three dimension we can use fractional derivatives to express the Fourier
transform

1 o eMFIK
F) = —/ T = Twyry 86
P( ) 2 oo (1 +p2K2)3/2 ( )
as a sum over Bessel functions. For small K (large F') we get that
1 F 2/3
P(F) ~ —| e F 87
)~ i (+) (7

Different approximations for the function ® may alter the power 2/3 but the ex-
ponential structure is robust. Different experiments by Liu [24], Brujic [26] and
analyses [28], all agree with the exponential form. One can always question the
error involved in the approximation of the function ® as a constant, but whether it
is worth the effort of obtaining a more accurate expression given the randomness of
grain shapes or even the topology of the contact network is debatable at this stage.
One thing seems clear from the experimental evidence - P(F’) rises from a very small
value, possibly zero, peaks and then decreases exponentially towards large forces,
and this feature is captured by this simple model.

The canonical distribution of stresses mentioned above offers an alternative to
the direct self-consistent approach for it predicts

- ! Z.fﬂzg—g (88)

e Vgrain

where f;r; is the diagonal element of the force moment and we are treating only the
pressure part of the stress for simplicity. If 7 is roughly parallel to f the distribution
(88) behaves as eI, This brief derivation needs to be refined by the fact that the
neighbouring f’s are related and Newton’s laws. This is a new approach which is
currently being explored.
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