Exact multi-twist solutions for Heisenberg spins on an elastically deformable cylinder
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We study the magnetoelastic behavior of a system of clas-
sical Heisenberg spins on an elastic cylinder. By applying
a nonlinear transformation we solve the self-dual equations
associated with the magnetic part. We obtain a novel hierar-
chical family of exact solutions that describe multi-twist spin
configurations on the surface of the elastic cylinder.

PACS numbers: 75.10.Hk, 75.80.4+q, 75.60.Ch, 11.10.Lm

The role of nonlinear excitations in low-dimensional,
artificially structured materials is becoming increasingly
important due to their observable effects on the phys-
ical properties of realizable condensed matter systems.
The underlying physics becomes much richer if the in-
terplay of topology and (curved) geometry is also taken
into account. Here we address this issue and find a new
hierarchy of domain-wall-type nonlinear excitations for
the classical Heisenberg spins on the surface of an elastic
cylinder. These excitations are quite different from the
known magnetic solitons or skyrmion-like solutions.

The motivation for seeking new exact solutions comes
from a seven year old prediction that, for classical Heisen-
berg spins on an infinite cylinder, a periodic topolog-
ical spin soliton and/or an anisotropic spin-spin cou-
pling should produce a deformation of the cylinder in
the region of the soliton due to violation of the self-
duality equations [1], which are satisfied, however, for
the isotropic single soliton case. The solutions of the
self-dual equations are the absolute minimum of the en-
ergy in each homotopy class associated with a spin dis-
tribution, where a homotopy class is characterized by its
winding number. All solutions of these equations satisfy
the Euler-Lagrange equation, but not vice versa. The
violation of self-duality is closely related to the concept
of geometrical frustration: A misfit between the width of
the soliton (characteristic magnetic length) and the ra-
dius of the cylinder (characteristic length of the system).

It has been anticipated that elastic cylinders would
deform due to magnetic interactions [1] but explicit so-
lutions could not be obtained for any deformation of
the cylinder due to the nonlinear nature of the result-
ing equations. Assuming a rigid cylinder and cylindrical
symmetry it was found that the single spin twist solu-
tion @ = 2arctan exp(z/pg) is the soliton solution of the
sine-Gordon equation and the energy associated with this
solution H = 8xJ|Q| is independent of the radius po of
the rigid cylinder. Here @ is the winding number (or

the Pontryagin index) of the spin solution () = 1 for the
single twist soliton). Since the sine-Gordon equation sup-
ports a periodic solution it was suggested that a periodic
pinch would occur on the cylinder, were it deformable.

Here we dispose of both the assumptions of cylindrical
symmetry and rigidity, p = po, and allow elastic deforma-
tions of the cylinder in the solution of the equations. We
employ a nonlinear transformation that gives an implicit
separation of the magnetic part of the Hamiltonian from
the elastic in a deformed geometry that corresponds to
the exact elastic solution. Using the transformation we
then obtain a family of exact solutions, each correspond-
ing to a set of twists in the spin field. The solutions are
given in a metric that depends explicitly on the defor-
mation of the cylinder and is valid for any continuous
deformation. This formalism holds for general underly-
ing geometries and is not particular to the cylindrical
support on which we focus here. Physically relevant sys-
tems include magnetically coated deformable (whether
metallic, non-metallic or organic) cylindrical thin films
on which our model and the presence of the predicted
spin domain walls can be tested experimentally.

The Hamiltonian is given by H = Hpyagn+He+Hpp—e
where the magnetic part (the nonlinear o model) in the
cylindrical coordinates is
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and the elastic part is
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Here v, x' and x" are elastic constants of the cylinder for
deformation along the axial (), radial (p) and azimuthal
(1) directions, respectively. In eq. (1) J denotes coupling
energy between neighboring spins, and the magnetization
unit vector i = (cosf, sinf cos ¢, sinf sin¢). Bending
and torsion contributions to the elastic energy have been
neglected in Eq. (2). The magnetoelastic coupling en-
ergy is given in general by Hp,—ei = ZikimLikim ik inm
[2,3], where Tjgm is a symmetric (with respect to in-
terchanging the pairs i, k with 1, m) tensor of rank four
and o;, is the stress tensor [4,5]. For 1D spin chains



H,, ¢ couples nonuniform chain stretching to the mag-
netic part, leading to J variation along the chain. In this
case there exists an important result [6]: to linear order,
H,,,_e; can be absorbed into Hqgrn, merely renormaliz-
ing J. In what follows we assume that the same applies
in 2D for stretching in both directions [7].

The above discussion holds for any arbitrary smooth
surface S with infinitesimal surface element dS =
Vgl dQ, where \/|g| is the determinant of the met-
ric tensor g*” of the support. Furthermore, to all such
surfaces one can apply an inequality due to Belavin and
Polyakov [8] and Bogomol’nyi [9]),

specific to our geometry (3)

For a deformed cylinder  [4,5] /]g] =
VP2 + (0rp) \/1 (0zp)?. In Egs. (1) and (2) we have
assumed that x" is sufﬁc1ent1y large such that 0,p < p
and x"(9,p)? is finite [of the order of the first two terms
in Eq. (2)].

Let us now define a new coordinate ¢ and a new vari-
able 9 through the nonlinear transformation
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The fields v, ¢ and p now become functions of the coor-
dinates ¢ and 7 and the magnetic and elastic parts of the
Hamiltonian in the transformed coordinate system can
be written as:
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where the gradient V is in the (-7 plane and we have
used (3a) to replace
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Note that the magnetic part, Eq. (5), describes a free
particle Hamiltonian with a field-dependent mass. Note
also that Eq. (5) depends on p implicitly through (.

The Euler-Lagrange equations for the magnetic vari-
ables can now be derived and studied. Similarly, the
Euler-Lagrange equation for the elastic part can be solved
as a function of z and 7 (either analytically or numeri-
cally) given ¥ and ¢. This, however, is not our aim here.
Rather, we are interested in finding exact magnetic solu-
tions for arbitrarily inhomogeneous configuration of spins
on the boundaries of the cylinder.

Traditional treatments of the problem assume uniform
such boundary conditions, giving rise to a well defined
integer winding number (). This number is the value of
the integral on the right hand side of Eq. (3) over the en-
tire surface normalized by 87J. For nonuniform bound-
ary conditions the integral generically yields a ’fractional’
winding number, ¢. In traditional treatments the class
of solutions with a particular value of ) are said to be in
the same homotopy class and, of those, the lowest energy
solution satisfies (3) as an equality. In terms of the angles
of the spin vector this gives the self-dual equations [8][9]:

sin 00,6 = +——L 0,
1+ (0zp)?
sin @ 6
— f,p=F 8
1+ (02p)? 00 = p ®

The same discussion applies to the case of nonuniform
boundary conditions, with equality giving the lowest en-
ergy state in the g-family of solutions.

In the new variables and coordinates Eqs. (8) conve-
niently reduce to Cauchy-Riemann relations between the
real functions, ¢ and ¢,
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The general solutions of Eqs. (9) are the harmonic
functions plus a logarithmic singularity in the presence
of sources (charges). On the cylinder these solutions must
be periodic in 7 and should tend to predetermined bound-
ary conditions at both ends of the cylinder. It follows
that
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The term outside the sum in both expressions corre-
sponds to the well-known instanton and is the only one
that survives under uniform boundary conditions. Only
nonuniform boundary conditions bring the higher har-
monics to life. The coefficient n (equivalent to the n-
instanton) is, in our terms, the ’charge’ of the instanton.
Expressing the above solutions in terms of # and phi,
there appear local twists in cosf-field wherever ¢ van-
ishes, as we proceed to illustrate.

The instanton sloution, with n = 1, is shown in figure
1, where we plot the value of cosf over the entire cylin-
der. In terms of %, this solution diverges at +0o (corre-
sponding to cosf — £1 or # — 0, 7). The solution also
diverges logarithmiocally in the vicinity of the charge, as



expected. The divergence at the source is due to a pos-
itive (negative) charge, corresponding to cosf = £1 and
physically originates in a group of spins that are fixed
at a particular orientation. The bigger this group, the
larger the local charge.
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FIG. 1. An instanton solution for cosé with n = 1, being
the instanton charge in eq. (10), and with all other terms
vanishing. Shown is the surface formed by the tip of the
spin on top of a rigid cylinder of radius R=2 in the { — 7
coordinates. Note that in the physical coordinates, = — T,
the cylinder is also elastically distorted. The divergence of
the function 1 both toward the ends of the cylinder and at
(¢, ) = (0,0), corresponds to cosf = 1. Notice the uniform
boundary conditions.

Turning to the twist solutions, in figures 2-4 we plot
solutions consisting of the first, second and third har-
monics alone. These show the twists between magnetic
regions with exactly opposite orientations. The twists
are located along the lines of nodes of the function .
The maximal number of domain walls, counting around
the cylinder at any possible (, is twice the order of the
highest mode in eqs. (10), N. Therefore, it is the bound-
ary conditions that mostly determine the structure. The
more modes 1 consists of, the richer the texture of the
twists. We emphasize that the coordinate system under-
lying these solutions is 7-(. To convert the plots to the
T-z coordinates one needs to solve explicitly the Euler-
Lagrange equations for p(x). This class of exact solu-
tions is new in the cylindrical geometry. To the best
of our knowledge, even for the rigid cylinder (9,p = 0,

¢ = x/po) this is the first time that these nonlinear tex-
tures have been derived.

The magnetoelastic term in the Hamiltonian will cou-
ple the magnetic twists to the stress field and will give
rise to deformations of the cylinder. This can be quan-
tified by writing down the Euler-Lagrange equations ex-
plicitly (not presented here) in the original coordinates
[5]). Although these equations are too cumbersome to
handle analytically, a simple substitution would convince
the reader that p = pg is not a general solution, except
in the trivial case when the magnetic variables # and ¢
are constant.
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FIG. 2. The spin field of a lowest mode solution, in the
¢ — 7 coordinates. This solution corresponds to Bi1b1 # 0,
while all the other terms vanish. The two nodes of this mode
generate a double-twist around the cylinder. Note two marked
difference between the instanton and the twist solution: First,
the boundary conditions at the edges of the cylinder are no
longer uniform. Second, the twist represents an exponentially
sharp walls between domains of exactly opposite spin polarity.

Equations identical in form to (8) are also obtained
in the context of (i) low-energy dynamics of the clas-
sical, isotropic, continuous antiferromagnetic Heisenberg
chains [10], and (ii) the stationary Landau-Lifschitz equa-
tion in the context of two-dimensional ferromagnetic
Heisenberg model. In these contexts, as here, these so-
lutions are distinct from the m-instanton (skyrmion) [8]
and meron [11] classes. The connection between the dy-
namic solutions for antiferromagnetic chains, stationary
solutions for ferromagnetic planes, and the above solu-



tions for deformable cylinders is useful for understanding
the behavior of all these systems from analysis of any one
of them.

In conclusion, through a nonlinear transformation of
the coordinates and the variables we have rewritten the
Hamiltonian of the nonlinear & model on an elastic cylin-
der in terms of spin-related fields, ¥, ¢, and an elastic-
related one p separately. The resulting equations resem-
ble the self-dual Belavin-Polyakov equations in all but the
boundary conditions, which need not be uniform. With
the help of the transformations, these equations become
exactly solvable. We have constructed a new explicit
class of exact spin twist solutions for states with frac-
tional winding numbers. These solutions and associated
magnetoelastic effects (deformation of the cylinder) are
important in their own right as well as in the theory of
nonlinearity and dynamics. We emphasize that although
we illustrated the results on a deformable cylinder, the
formalism is valid for a general geometry (with the metric
tensor g"”), e.g., on a sphere, a torus, etc.
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FIG. 3. The spin field of a second mode solution, in the
¢ — 7 coordinates, corresponding to B2b2 # 0, while all the
other terms vanish. This solution has four nodes, giving rise
to four domain walls around the cylinder.

Finally, we suggest that it should be possible to exper-
imentally observe these magnetic solutions, the winding
number ¢ and the concomitant magnetoelastic deforma-
tions in real systems such as magnetically coated cylindri-
cal thin films, possibly on recently observed tubular fluid
membranes [12], and even on nanotubes. Specifically, ul-

trasonic techniques (such as change in normal modes of
the cylinder subsequent to domain wall formation, at-
tenuation and phase shift) can probe the deformation
of the cylinder, while magnetic force microscopy (MFM)
can be employed to observe the magnetic texture. Rele-
vant systems include: cylindrically wrapped thin films of
magnetic materials, e.g., layered 2D Heisenberg magnets
such as (CnH2n+1NH3)2MX4 and [NH3(CH2)NH3]MX4
for n<16, where M = Cr, Mn, Fe, Cu, Cd and X =
Cl, Br [13]. Other examples include KoCuFy, CapMnOy,
RboFeFy, etc. [13] and magnetic Langmuir-Blodgett
films of manganese stearate Mn(C1gHz5052)2 [14].
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FIG. 4. Asin firgures 2 and 3, the spin field of a third mode
solution, in the { — 7 coordinates. The solution corresponds
to B3bs # 0, while the other terms vanish, and gives rise to
six domain walls around the cylinder.
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