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DYNAMIC STRUCTURE FACTOR OF FRACTALS
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The dynamic structure factor S(g. w) of the vibrational modes ol a deterministic fractal 1s analyzed as a function of both
frequency () and momentum (q) transfer. It 1s found that S(q. w) 1s peaked a’ Gman 2 7" where @15 the anomalous
diffusion exponent. and 1s a scaling function of ¢*** "' /. The results are obtained by a nov el recursion method for the calcula-
tion of the vibration Green's function of a determinssuc fractal. They confirm predictions based unon the fracton scaling model

1. Introduction

The dynamics of disordered systems is a subject of
considerable interest. In particular. much work has
been devoted 1o studies of gecometrically disordered
systems (e.g. percolation clusiers ) by scaling consid-
crations [ 1.2]. by numerical simulat'ons [3] and by
scattering experiments [4.5]. These structures ap-
pear 1o be homogeneous at length srales longer than
the connectiviny length & and exhibit fracial charac-
leristics at shorter length scales. The dynamic exci-
tations of the latter regime are termed fractons [ 1.2}].
Fracton modes are localized: their localization length
decreases rapidly with increasing frequency [2] and
1s smaller than & By scaling considerations it was ar-
gued [ 1] that the fracton density of states V() var-
ies as '~ ', where @ is the frequency and d is the
fracton dimensionality [ | |. The excitations pertain-
ing o the homogencous regime are phonons, with
sound velaciny that depends upon 2 Thus, within the
scabing piciuve. the low-frequency porvon of the
spectrun consists of oviended phanons and the
higher-frequency part of localized fractons. The
CrossoMer fregquency ¢, ehus 10 Zero as & increases
{c.g. as the percolation threshold 15 approached).
“t-0 2 where s the exponent characteriz-
ing the diffusion on a fractal {6]. The crossover from
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fractons 1o phonons has recently been established by
light scatterin® ~ ~ «i-»»nic [4]. Fracton modes were
also invoked to interpret Raman scatiering data of
silica aerogels [7].

An excitatior. spectrum 1s commoniy probed b
inelastic neutron or hght scattering. which measures
the dynamie structure factor £tg. o} as a function of
frequency and momentun traasicr of the scattered
part:icles. This method has recently been appled o
siiica aerogeis |4 ] and aiso 1o duuted anulerromag-
nets [3]. in which the shori-length-scale spin modes
are expected 1o have fracton features [ 2.

The detailed form of the dynamic structure factor
ol tenuous systems is yel unhnown. Some general re-
marks can be made using scaling arguments {§] and
an eapiictt analysis was carried cut within 1ne efice-
tive medium approvimation (@] Hore we present an
exaci calculation of the dynamie structure facior ol a
wractal obyecy {103,

The concept of fracial scometny. Nirst sntroduced
M Blandeloron {100 has 1umngd DU 0 ©2 T Mot usl-
ful ool in studies of tenuous materials. For example,
<"Yica acrogels at shon fength scales are characterized
by their fractal dimensions [4]. The same 15 true for
a percolating system close cnough to ihe percelation

threshold (121, I is therefore of inicrost (0 mvesi-
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gate the dynamic properties of a fractal structure. In
section 2 we compute St g. @) for a modified version
ol the Sieipinski gasket [11] (see fig. 1). We present
there a novel recurston method for calculating the vi-
bration Green’s function of a deterministic fractal.
We find that S(4. w) has a well-defined maximum as
a function of @ or w and exhibits single-variable scal-
ing. The analysis of the peak position as a function of
frequency confirms the fracton model prediction
[ 1.2.8]. Section 3 includes some conclusions.

2. The structure factor

The determination of S(g. w) necessilates the
knowledge of the full Green’s function of the vibrat-
ing structure. We present here a new algorithm for a
successive construction of the Green's function, and
use it 1o derive a recursion relation for S(q. w). The
algorithm is extremely efficient and can be exploited
in computations of other properties related 10 vibra-
tion dynamics. e.g. the heat diffusion.

The model considered (see fig. 1) 1s a version of
the two-dimensional Sierpinski gasket [ 11 ]. on which
wesalve the seatar elasticily equations
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where y, is the displacement of the ith mass from its
equilibrium position. nn denotes nearest-neighbours
and ¢ is the spring constant. The distance between two
vertices of different triangles is set 10 zero 1n order to
make the structure geometrically seif-similar. This
structure is more amenable to efficient calculations
than the usual Sierpinski gasket. Though it is not self-
similar. the low-frequency spectrum rapidly con-
verges (as a function of iteration order) to that of the
common Sierpinski gasket [11]. It simulates a struc-
ture with holes on all length scales - a feature exhib-
ited by some of the sysiems [4] studied in scattering
experiments.

The solution to eq. (1) may be written in terms of
the retarded Green's lunction, whose i.j- matrix ele-
ment is denoted G, (w. ). Here i and ; are site in-
dices. The structure factor is then given by

Stq.w)= - }: Im Y explig-(R,—R)]G, (w.).

()

in which ¢ is the real part of . and R, denotes the
coordinate of the sth site.

We now outline the derivation ol the r¢cursion re-
lation for the Green's function matrix elemenis which
arc used in eq. ¢ 2) 1o obtain the recursion formulae

Fra | Toastages tache constiaction of the pashee
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ol S(g. w). Suppose we know the full Green's func-
tionofthe (n—1)thstage.G'"~"". The Green's func-
tion of the nth stage. G'"'. can be written, 1n matris
notation, as

G'=[g~'+T]"". (3)
where
Glu—ll 0 U
g= 0 G- 0 (4)
0 0 G "

and I' s a coupling matrix. connecting the three
{n—1)th gaskets 10 form the nth stage gasket. Note
that G'"' is an N matrix. where N is the number of
sites (.V=3") in the nth stage gasket. Referring to fig.
1. one notes that there are only six nonzero matrix
¢lements in I'. the ones connecting together the three
{n—1)th stage gaskets. Expanding eq. (3). it is eas-
ily seen that each term of the expansion includes those
matnx elements of [, and the diagonal («) and non-
diagonal (f) matrix elements of G'”~'' with respect
1o the external sites of the (17— 1)th stage. (For ex-
ample. G, and G, - in fig 1.) It therefore lollows tha:

G'"'=g-gTa. T=C[l+gl]-"'. i3)

and to obtain T explicithv. one has to inverta 6 by 6
matrix. The clements of the symmetnc matrin T are
given in terms of a and /4. which n turn. are calecu-
lated recursively. The evaluation of $(4. w) involves
the site coordinates. To incorporate those into the re-
cursive procedure. we have adoptied an hierarchical
scheme in which the coordinates of each site are de-
fined with respect to the center of the smailest gasket
to which 1t belongs. the latter being measured with
respect to the second smallest gasket. and so on.

The results are presented for a gasket of 3" sites
and wavevectors ¢ ai an angle x1/4 relative to one of
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Fig. 2. Typical curves of w’S{y. t7) versus ¢ Tor three closeby
frequencies belonging 1o different subsets.

which confirms the fracton model prediction [1.2].
Here 2+0=In(5)/l1.(2). Indeed. eq. {6) agrees with
the scaling assumption | {.2] for the mass i» and the
coupling constant /. in conjuncuion with the basic re-
lation e " =1/m1. Thus. excuations of frequency
correspand 1o modes oF spauai variauon ¢!, The
spectrum of the gaskel includes a small number ot
nondegencrale cigennalugs characterisiic 1o s spe-
cific consiructieon procedure f13] These were ne-
giccted i the anainas of thoverulf saapl wiuseantiy
properties and we concentrated on cigenstates char-
acteristic to the fractal nature of the structure. Most
of these eigenvalues are highly degenerate. They sep-
arate 1nto subsets of frequencies {13}, within each
the frequencies relate by w” =2"""w:_, (o7 Jr.
=20, .1 ). where ¢« enumerates members o7 the
same subset The degzneracy of the «2° cigenraiue i3
approx:mately proportional 10 3.
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In torms of the (aormalizec ) figenmodes ¢, and

cigenirequencies ¢, the struciure 1acior tzhes the
form
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Stg.my= Y 0a(q) 05 1q) 0" ;)

where ¢, (g) is the spatial Fousier transform of o, ( R).
As S(q. ) satisfies the sum rule | dw wS(q. w)=1,
the assumption of single-leng.h scaling implies

Stg.wy=w Flw/g'=""" 7). (7N

where F is a scaling function. To test this form, we
have calculated S(q. w) for successive eigenfrequen-
cies belonging 1o the same subset. For numerical rea-
sons. the J function was eliminated. by adding an ar-
bitrarily small imaginary term 1y to w-. calculating
S{q. w). and then multiplying the resull by ». For
" —w} | <n. the result 1s independent of ». Effec-
tively. this procedure is equivalent 1o the calculation
of -0l (a) ¢.,(q). where the sum runs over all de-
generate states of eigenfrequency w,. The corre-
sponding curves as a function of ¢. fall one onto the
other when the g axis is rescaled by a factor of 2 for
each successive frequency (see fig. 3). Hence. though
the shape of S(q. w) of two frequencies belonging to
differunt subsets 1s not the same. the structu  lactor
of Irequencies nf the same subset obey the scaling
form t 7). which again confirms the Iracton model
predictions {31,
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A technical point should be noted. The structure
factor and hence the scaling function F are cxpected
10 obeyv scaling in the # -0 limit. The deviatien from
eaact scaling observed 1n tig. 3 is due 1o numerical
iterative approach towards that limit: one chooses a
value for 7. calculates the approximate eigenvalue,
reduces 7. then recalculates the eigenvalue until the
desired accuracy is achieved. The nonsys‘:matic de-
viations from scaling can be removed by further it-
erations. The scaling of the structure factor is. how-
ever, clearly demonstrated by fig. 3.

3. Summary

We have shown that the excitation spectrum per-
laining 10 the equation of motion (1) obeys single
length scaling for a fractal structure. This holds not
only for the peak position of the structure factor. but
for its shape as well.

This computation cannot describe the phonon-
fracton crossover. as it is valid only in the fracton re-
gime. To consider the entire irequency range. the ef-
fective medium approximation (EMA) was ex-
ploited [9]. The spirit of this model is to replace a
random system by an elfective homogeneous (and
periedic ) medium, which one can solve for the dy-
namics. The parameters of the ¢flective medium de-
pend. in a self-consistent way. upon the parameters
of the random sysiem. The line shape of the structure
factor. within EMA, ¢ci 2 be written in terms of an ef-
fective sound velocity and linewidth, 7 ="', both func-
tions of frequency [9]. One car then analyzz their
himiting behaviou s. in the phonon (c. <@ ) and in
the fracton 1w > w_ ) regimes. By interpolating be-
tween these two limits and using the EM A line shape,
Courtens et al. [4] were able 1o fit beautifully thair
Erillouwin scatiening data.

With'n EMAL the sound vebaity. up (o w2 was
found [Y] 10 pe independent of ¢». Above w1t In-
creased wiih . The scattering width ! followed the
Rayleign law in the phonon regime. - 'xw'"'. and
became proportional to the trecuencey in the fracion
repnnie, sy conrming the lofie- Reger fimut for
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fractons. denived from scaling arguments |8]. How-
ever. within EMA, the linewidth did not scale with
.. I11s conceivable that this failure of scaling is con-
uected with the approximations mnvolved in the ef-
fective medium approach. The calculation presented
here indicates that in the fracton regime the dynam-
ics does obey single variable scaling.

We finally speculate upon the spatial extension of
the eigenfunctions :orresponding to a given fre-
quency. The 3’ degeneracy of the w; mode suggests
that there is a representation in which each eigen-
function extends over 3"~ sites. This implies that the
spatial extension is approximately 2*~'> 1 /gn...in a
compleie agreement with the width of the computed
structure factor. The spatial exiension of the wave-
funcuions is most effectively probed by the heat dif-
fusivity; it would be of interest io explore thi.
quantity.
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