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Topological Analysis of Foams and Tetrahedral Structures**

By Gad Frenkel,* Raphael Blumenfeld, Peter R. King and Martin J. Blunt

The analysis of morphology of porous materials, such as
granular aggregates and foams, has advanced greatly in the
past decade due to increasing computational abilities and
micro-tomography tools.[1,2] The study of low porosity
materials, such as soil, is significant to the oil industry[3]

due to interest in permeability, heat conduction and improved
recovery.[4] Many algorithms have been suggested with
limited success for extracting pore networks that describe
the porous structure properly.[1,2,5,6] The mechanical proper-
ties of the porous solid are also of great interest in the granular
materials community[7] and in the porousmetal community.[8]

The combination of high porosity, high surface area, solid-like
mechanical properties, and low mass in materials such as
metallic foams are important to many applications, e.g., heat
exchange[9,10] and joint replacements and additional medical
applications.[8,11] Several approaches have been used to study
the morphological structure in attempts to provide mean-
ingful descriptors of cellular structure. Foams have been
mostly studied using either known periodic structures[3,12,13]

or by simulated structure, e.g., by the software surface
evolver.[14,15] From these, simple properties were extracted
from images. In the past few years, methods of extraction of
morphological properties and skeleton networks from three-
dimensional (3D) tomography have been developed.[1,2,10,16,17]

Among the advantages of such approaches are the direct
applicability to real systems and the ability to monitor the
properties of particular samples. For example, Vicente and
coworkers[18] have studied the 3D structure of metallic foams,
using the watershed algorithm, to obtain two interleaved
skeletons for the cells and the solid matrix. Another approach
is to use the 3D images to obtain statistical descriptors of the
system, using integral-geometry morphological image analy-
sis, that can characterize patterns in terms of Minkowski
functionals.[19] The Minkowski functionals produce several

scalar structural descriptors that are complimentary to
two-point correlation functions. While, these descriptors are
simple global properties it is not trivial to connect these
descriptors to the local structure in terms of pore-scale
networks. The Minkowski functionals are part of the data that
describes statistically the structure of the system. Still, the
novelty and complex structure of these materials require
further investigations of the morphology topology and
different and more involved statistical properties. In parti-
cular, most existing network descriptions fail to quantify the
connectivity, a key property in porous materials. Therefore,
fundamental theories predicting the properties of porous
structures are high in demand. The aim of this paper is; (i) to
introduce a promising approach – the Blumenfeld–Edwards
entropic formalism,[20,21] (ii) to present a method for
identification of the cellular structure, (iii) to represent the
cellular data in a way that is compatible with the Blumen-
feld–Edwards formalism, and (iv) to analyze simple proper-
ties of cellular structures.

Foams and granular media have common properties. Both
have disordered structure, for which the void space is as
important as the material, and whose characterization is a key
to the understanding and prediction of physical properties,
such as permeability and thermal or electrical conductivity.
These similarities suggest that the structure and properties of
these systems may be described and analyzed within a unified
formalism. Such a formalismhas been proposed by Blumenfeld
and Edwards,[20,21] following earlier suggestions for applying
an entropic formalism to granular systems.[22] The formalism is
analogous to statistical mechanics in conventional thermo-
dynamic systems,where the energy of the system is replaced by
its volume and the temperature is replaced by a new quantity,
called compactivity.[22] A key to its application is the
description of the configurations of the system by a well
defined set of parameters, called degrees of freedom.

In this paper, we illustrate the application of the unified
method on systems that can be represented as a set of
connected tetrahedra: quadrivalent foams (having four
plateau borders per vertex) and 3D Voronoi tessellations.
The method consists of first transforming the foam
skeletal network into a connected assembly of pseudo-
grains. Next, an automated method is described to identify
the cellular structure. The cellular structure is then used
to extract topological data, such as the number of skeletal
throats per cell. Finally, we demonstrate how to use the
Blumenfeld–Edwards formalism to compute expectation
values of structural properties of model three-dimensional
structures.
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At the heart of the characterization method is a partition of
the void space into cells, inter-connected via skeletal throats
sometimes referred to as ‘‘windows.’’ The foam structure is
transformed into a framework of polyhedra as shown in
Figure 1(c–e). The transformation preserves the correct
connectivity of both the lamella of the foam and of the void
space. There are variousmethods to identify the plateau borders
and vertices of the foam.[4,17,23] One method successfully
applied for foam structure used the watershed algorithm.[17]

Other methods include methods that are based on the maximal
ball algorithm[5,6] andmethods that are based on themedial axis
algorithm.[23] These methods have been applied successfully to
micro-tomography images to extract the pore network of low
porosity materials.[2,5] The maximal ball method assumes that
pores are locally wider than the throats that link them to
neighboring pores. The algorithm, and its successors, are
designed for low porosity and thus are ideal for the
identification of the vertices and plateau borders. For foam
the algorithm acts upon the lamella of the foam in which the
pores, found by the algorithm, represent the vertices and the
throats represent the plateau borders. While, this method is
applicable to general structures, in what follows we
concentrate on ZV¼ 3 in two-dimensional (2D) and ZV¼ 4
foam in 3D. We also assume in the following that the vertices
and plateau borders have been properly identified.

Consider a foam, whose every vertex is connected to
exactly four other vertices by plateau borders,ZV¼ 4. As a first
step, every vertex is ‘‘dressed’’ by a tetrahedron whose

corners are the midpoints of the four plateau borders
connecting it to its neighbors (Fig. 1d). The tetrahedra touch
their neighbors at the corners. We can regard the tetrahedra as
pseudo-grains and their corners as the inter-granular contact
points. Topologically, the foam and the tetrahedra structure
are homeomorphic, i.e., the connectivity of the two structures
and of their void spaces are identical. A similar transformation
can be carried out for 2D trivalent (ZV¼ 3) foams, where
vertices are dressed by triangles by connecting the midpoints
of the ligaments around them (Fig. 1a, b).

Cells are simply-connected polyhedra (Fig. 2), home-
omorphic to a sphere. The surface of a cell consists of two
types of facets: the triangular facets of the tetrahedra surround-
ing the cell (opaque triangles in Fig. 2),which in the followingwe
refer to as faces, and the skewed polygons that the triangles
enclose (transparent in Fig. 2). The triangular faces form a close
network on the surface – every face is connected to exactly three
other faces on the same surface. By construction, every facet can
be associated with exactly one cell and one tetrahedron. Thus,
there are exactly four cells around each of the tetrahedra,
corresponding to the four bubbles that meet at the vertex of the
foam. The cell, defined by the facets, is open and connected to its
neighboring cells via the aforementioned skewed polygons,
which we call skeletal throats. A skeletal throat is characterized
by the tetrahedra edges that make its perimeter.

The partition of the foam into cells and skeletal throats is
unique, namely, following the above rules every void point will
belong to one and only one well-defined cell. Failing to identify
a face would result in an open set of faces around a particular
cell. In practice, the characterization methodmatches the cell to
the original bubbles. The uniqueness of the partition,
correspondence to the physical cells, and the lack of ambiguity
is a major advantage of this characterization method.

Since a cell is a polyhedron homeomorphic to the sphere,
then its properties are related by Euler relation,[24]

nc " ne þ nf ¼ 2, (1)

G. Frenkel et al./Topological Analysis of Foams and Tetrahedral Structures

Fig. 1. Transformation of foams to pseudo-granular structures. a) Six vertices of a 2D
foam, forming a cell, are ‘‘dressed’’ by triangles (full lines) by connecting the midpoints
of the ligaments around them (dashed lines). b) Part of a transformed 2D foam. c) The
plateau borders and vertices of a 3D foam. d) Transformation of the vertices into
tetrahedra by connection of the midpoints of the plateau borders. e) The corresponding
network of tetrahedra.

Fig. 2. A typical cell. The surface consists of a closed set of triangular faces of the
tetrahedra that surround the cell (opaque triangles) and skewed polygons (transparent).
The latter are the skeletal throats between neighboring cells.
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where nc is the number of corners, ne the
number of edges, and nf the number of facets.
Within our construction, a cell having Zf

vertices and Zt skeletal throats surrounding it
would have 3Zf edges and a total of ZtþZf

facets. Since each corner is shared between two
edges then the number of corners is half the
number of edges, 3Zf/2. Substituting in Euler
relation (1), gives

Zt ¼ 2þ
Zf

2
(2)

It is interesting to note that Zf, the number
of triangular faces surrounding a cell, must
be even, which also follows from the fact that the
number of corners is integer. This also means that the number
of vertices around a bubble of the original foammust be even.

Identification of Cells and Skeletal Throats

As mentioned, skeletal throats are the skewed polygons
between cells. Once the set of faces is known, the skeletal
throats are identified as follows. Place normal unit vectors on
every face, directed outwards from its tetrahedron and draw
vectors around the face in the clockwise direction when seen
from inside the tetrahedron (Fig. 3). The boundary of a skeletal
throat is identified by following loops of the same vectors in
the anticlockwise direction.

We now need to identify the set of faces that surround a
given cell. To this end, we use a different set of algorithms
from the one used for the lamella. This is because the maximal
ball algorithm is designed for low porosity while the porosity

in foams is very high and because the skeletal throats are no
longer tube-like structures, which makes that algorithm less
effective. Instead, we use an algorithm that involves inflation
of a deformable bubble from the center of a facet into the cell,
while keeping the bubble’s curvature positive everywhere at
all times. This ensures that the inflation process stops soon
after the bubble starts exiting the cell through the throat
(Fig. 4). The inflation can be done, e.g., by imposing that the
bubble may not penetrate any grain andmay have no negative
curvature anywhere, or by treating it as a physically growing
balloon, following Hamiltonian dynamics with a curvature
energy term that disallows grain penetration and favors a
positive surface curvature everywhere. An advantage of the
latter method is the ability to implement different energy
terms and to mimic real physical processes, such as mercury
injection. This method works best with a 3D voxel representa-
tion of the pore vicinity.

A more efficient cell-identification method uses a plane
cutting process and produces a convex polyhedron as follows.
Choosing a face, a small spherical bubble is attached to its
center and is inflated away from it by moving the bubble
center along the normal to the face surface. The expansion
stops when the bubble cannot expand without penetrating a
grain. Next, faces of vertex tetrahedra are ordered by their
distance from the center. Following this order, each face added
to the list defines a plane and all tetrahedra on the other
half-space of this plane are deemed as not belonging to the
bubble and to the list. The process endswhen all the faces have
been visited. The bubble comprises the intersection of all
allowed half-spaces of these cutting planes. The process
produces non-concave polyhedral bubbles and these form the
basis for a search for the facets that belong to the cell.

Both methods produce non-concave bubbles. However,
cell surfaces may have concave regions. In such cases, the set
of faces surrounding the bubble may not necessarily close.
Thus, the set of faces is next checked for completeness as
follows. For each face, its neighbor faces are identified: these
are faces of different grains that share a corner with the current
face. Faces having fewer than three neighbors are disregarded
recursively until either a closed, or an empty, set are left. If the
set is incomplete, neighboring faces to those in the list are
added and completeness is checked again. The process is

G. Frenkel et al./Topological Analysis of Foams and Tetrahedral Structures

Fig. 3. Identification of skeletal throats: normal unit vectors (blue) are placed on each
face, facing outwards from the tetrahedron. Vectors ordered on the boundary of faces in
the positive direction of rotation around the normal vectors. The window edge is
extracted by following the same vectors in the negative direction of rotation.

Fig. 4. Illustration in 2D of cell identification by expansion of non-concave deformable bubbles: a bubble (closed
dark loop) fills the cell and protrudes out of it only minimally due to its non-concavity.
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cell and the tetrahedra whose faces belong to the complete set
are identified as surrounding the cell. If more than one cell
emerges at the end of the process, then some tetrahedra have
more than one face in the list. In this case an additional search
method is used to isolate the correct cell. A face is deleted from
the set randomly and the above method is used to check for
completeness again. If the resulting subset still has multiple
faces that belong to the same tetrahedron or is not closed,
another face is deleted and so on. Faces belonging to one cell
cannot be a part of another and are excluded in following
searches to improve efficiency.

To illustrate themethod, we have constructed two samples:
a 3D Voronoi tessellation, made by seeding points with a
Poisson distribution[25] and a mono-disperse foam produced
by the surface evolver and designed to have a narrow
distribution of bubble volume.[15] For both samples we have
constructed the tetrahedra and identified cells, using the
above algorithm, as shown in Figure 5 for the Voronoi system.
In addition to the tetrahedra (5A) and cell structures (5B), we
show in 5C the connectivity network of cells. The latter are
represented as spheres, whose sizes are proportional to the
cell volumes. The tubes connecting spheres represent inter-
cellular throats.

From this representation, we can extract a range of
structural properties, as demonstrated in Figure 6 for a
Poisson–Voronoi tessellation and a mono-disperse foam. The
analysis of these properties shows that there are distinct
differences between the two systems. We have studied
distributions of both topological properties: the number of
edges per throat, the number of throats per cell and the
number of facets per cell, and of geometric properties: throat
area and cell volume. We find that the topological properties
of the mono-disperse foam are consistently more narrowly
distributed. We also find that the distributions of the
geometric properties differ significantly between the two
structures. This suggests that these distributions can be used
as sensitive fingerprints of foam and cellular structures. It
would be very interesting to compare our results with
measurements of real foam samples. Such comparisons,
however, will be the subject of future work.

The topological properties of the tetrahedral structure, such
as the number of throats per cell and the connectivity, can be
used to extract additional geometrical properties of the original
foam, such as throat cross-sectional areas of foam and contact
area between a cell and the plateau borders that bound it. For
example, knowing the tetrahedra/vertices that bound a
window in a wet foam, the throat area can be extracted by
identifying the set of plateau borders surrounding the throat
using the maximal ball algorithm: the vertices of the foam are
set as the local maximal balls and the plateau borders are found
by themaximal ball algorithm to be the throats of the algorithm
that connect them (Fig. 7). The throat area can be extracted by
the projection of the plateau borders onto the plain that is
normal to the vector connecting the center of the two cells. In
similar manners properties such as cell volume and the cell’s

surface area can be extracted.Wewill not pursue this extraction
any further in this paper as our aim here is to present the
topological characterization of the structure.

Edwards’ Compactivity

Finally, this method can be used to underpin the entropic
formalism based on Edwards’ compactivity concept.[22] It has

G. Frenkel et al./Topological Analysis of Foams and Tetrahedral Structures

Fig. 5. Extraction of the cellular structure and the connectivity of a random Voronoi
foam. A) The tetrahedra structure; B) the partition into cells (a single cell of which is
shown in Fig. 2); C) the extracted network, where cells are represented as spheres, whose
sizes are proportional to the cell volumes, and tubes represent the inter-cellular skeletal
throats.
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been proposed that disordered configurations of granular
assemblies can be described by a statistical-mechanical-based
entropic analysis, much like conventional thermodynamic
systems. This approach has been later adapted to foams and
cellular structures.[20,21] In this section, we give a brief review
of the salient points that are relevant to the analysis to be
presented below.

The formalism is based on regarding the
volume of the assembly, granular systems or
foams, in the same way that energy is in
thermodynamic systems, and replacing the
temperature by an analogous quantity—
compactivity.[20–22] In this approach the struc-
ture is presumed to have a very large number
of possible ‘‘states,’’ where each state repre-
sents a possible configuration of the system
components. For consolidated granular assem-
blies, a state is defined by the position of grains,
orientation, and shape. For foams, a state is
defined by the cellular structure, the connec-
tivity of cells and so on. The subset of
independent parameters that define all of the
possible states is called the set of degrees of
freedom. Each state has a probability of
occurrence that depends on the system’s
volume V and states with identical volume
are assumed to have equal probabilities of
occurrence. The probability is given by a
Boltzmann-like factor, exp("V/X), where X
is the analog of the temperature, named the
compactivity.[22] Due to the astronomically
large number of states in macroscopic systems,
the phase space of the system’s states can be
regarded continuous and the states have an
occurrence probability. This probability,Q({q}),
depends on the statistical distribution of the
degrees of freedom, {q}, and it is the analog of
the density of states in thermal systems. The

density of states may be non-analytic because it must vanish
for non-physical states.

The partition function is a non-normalized integral over the
probabilities of all possible states of the system, which are
expressed by the set of parameters {q},

Z ¼
Z

e"W qf gð Þ=XQ qf gð ÞPdq (3)

Here, W is a function that gives the volume of the entire
system in terms of the degrees of freedom {q}. The entropy, S(V),
is defined as the logarithm of the number of states at a given
volume W¼V. The compactivity is defined in terms of the
entropy, X¼ @W/@S, in analogy to temperature in thermal
systems, T¼ @H/@S, whereH is the Hamiltonian. This approach
makes it possible to calculate structural properties as expecta-
tion values. For example, in consolidated materials made of
grains, the mean volume associated with one grain is

Vg

! "
¼ 1

Z

Z
Vg fqgð Þe"W qf gð Þ=XQ qf gð ÞPdq, (4)

and the variance of this volume is given by

var Vg

# $
¼ V2

g

D E
" Vg

! "2

¼ 1

Z

Z
V2

g fqgð Þe"W fqgð Þ=XQ qf gð ÞPdq" Vg

! "2 (5)

G. Frenkel et al./Topological Analysis of Foams and Tetrahedral Structures

Fig. 6. Extracting data from the cellular structure of Voronoi tessellation and mono-dispersed foam.
a)–c) Topological properties a) the number of faces per cell b) the number of throats per cell c) the number
of edges per throat. d)–f) Morphological properties: d) the throat area normalized by the mean of the throat area
e) the grain volume, normalized by the mean grain volume f) the cell volume frequency.

Fig. 7. a) Use of the topological information obtained and the maximal ball method to
obtain the throat of metallic foam (illustration). Vertices (maximal balls) and plateau
borders (throats of the algorithm) corresponding to the tetrahedra that bound a skeletal
throat are identified using a maximal ball method. The structure surrounding the throat
is projected to the plane, normal to the vector connecting the centers of cells that share the
throat. The throat cross-section area is obtained from the projected image. b) Dry foam,
for dry foam the throat area can be estimated the same way or simply by creating the
skewed polygon that connects the vertices of the throat found by the topological analysis
and by projecting the skewed polygon as above.
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been validated experimentally,[26,27] but the suggestion to
apply it to cellular systems and foams[21] has not been tested. If
this approach is indeed useful for the latter materials then it
makes possible useful predictions of their structural proper-
ties. To check the formalism and use the partition function in
Equation (4 and 5), one must identify first the degrees of
freedom. The degrees of freedom are only a subset of all the
possible variables that can describe the structure – the
independent variables.

It has been proposed recently[20,21] that a useful set of such
variables is given by small volume elements called quad-
rons.[21] These volume elements are quadrilaterals in two
dimensions and octahedra in three. In granular systems, the
identification of quadrons is based on the construction of the
network of contacts between grains. In foams and cellular
systems, it is based on a construction of equivalent frame-
works of tetrahedra between vertices of the skeleton of the
structure. Here, we use this idea to build a fully automatic
method to obtain the cellular structure; to obtain the structural
characteristics of the foam; and to identify the quadrons. In
principle, the coordination number of a foam vertex, defined
as the number of vertices it connects to, ZV, can be arbitrary.
However, for most foams and cellular structures ZV¼ 4 and,
for simplicity, we focus here only on such systems. Such
systems, which we call tetrahedral systems, can also occur on
the molecular level, e.g., in silicates, and in dense colloidal
aggregates.

To apply this formalism to our tetrahedral structures, it is
convenient to tessellate the space that the structures occupy
with shapes of a particular topology. This has been done in[21]

– the 3D volume of the structure is tessellated by volume
elements, called quadrons, all of which are octahedra. The
quadrons are constructed as follows (Fig. 8). Choose a face of a
particular tetrahedron v, residing around cell c. The three
edges of the face border on three polygonal throats, one of
which let us call p. Connect the end points of the edge that
borders p both to the centroid of the face center and to the
centroid of the throat p. The edge ends and the two centroids
form a skewed quadrilateral. Now connect the four corners of
this quadrilateral both to the centroid of cell c and to the
centroid of tetrahedron v. The result is an octahedron, which
can be indexed by cvp. This is the volume element that we call
quadron. It is straightforward to convince oneself that by
carrying out this tessellation around every
edge of every face, the tessellation covers the
entire volume of the structure. Typically,
quadrons are asymmetric and non-convex.

In foams there are three quadrons per face
and hence twelve quadrons per tetrahedron. It
has been shown that the number of degrees of
freedom required to describe the structure
uniquely, Ndof, can be bounded, 27NV/
5<Ndof< 11NV/2, where NV is the number
of foam vertices (tetrahedra).[28] Thus, the
number of quadrons (12NV) is much larger

than Ndof. It is convenient to use quadrons as the degrees of
freedom, but a subset of independent quadrons must be
chosen. The selected quadrons may ‘‘interact’’ with one
another, i.e., be correlated, which would lead to a complex
density of states Q({q}). The derivation of the density of states
in any model is an interesting and challenging problem that
has not been addressed yet in the literature. Tomake progress,
we use here the simplest possible model: we assume that the
independent quadrons are uncorrelated. This is the analog of
ideal gas approximation in standard thermodynamics. Using
this approximation, the partition function (3) is

Z ¼
Z

e
"a

PNdof

q¼1

Vq

%
X

Q fqgð Þ
YNdof

q¼1

dVq

¼
Z

e"aVq=XP Vq

# $
dVq

& 'Ndof

, (6)

where a¼ 12Nv/Ndof is a factor that takes into consideration that
we sum in the volume function only over a subset of the
quadrons. Figure 9 shows the probability density function of
quadron volumes for both the Voronoi and the mono-disperse
foams. For example, the g distribution fits well the distribution
of quadroon volume for the mono-dispersed foam. Using a
gamma distribution for the mono-dispersed foam,

P Vq

# $
¼ ba

G að ÞV
a"1
q exp "bVq

# $
; (7)

in the canonical partition function (6), and assuming the ideal
quadron gas approximation, we can obtain explicitly the nth

G. Frenkel et al./Topological Analysis of Foams and Tetrahedral Structures

Fig. 8. Construction of quadron in 3D: an edge of a face is chosen. Its ends are connected
to the centroids of both the face and a skeletal throat (the highlighted line represents the
edge bordering with the skeletal throat), making a skewed quadrilateral. The corners of
the quadrilateral are connected to the centroids of the tetrahedron and of the cell. The
result is an octahedron – the quadron.

Fig. 9. The probability density function of 3D quadron volume for: Voronoi cells (left) and a mono-disperse
foam (right).
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moment of the distribution of the volume per quadron.

Vn
q

D E
¼

R
e
"a

P
q

Vq

%
X P

q
Vn

q

Q
q
P Vq

# $
dVq

R
e
"a

P
q

Vq

%
X Q

q
P Vq

# $
dVq

¼ G nþ að Þ
G að Þ

bþ a=Xð Þ"n (8)

It should be noted that, due to the normalizationwithin this
approximation, Edwards compactivity X is scaled down by a
factor of a.

For the Voronoi foam, properties can be computed either
numerically or by fitting the probability density function with
a known function and carrying out an analytic calculation.

Conclusions

In this paper, we presented a characterization method of
foams and tetrahedral cellular structures. The method
comprises several steps. First, vertices (nodes) of the foam
are transformed into tetrahedral pseudo-grains. This yields a
framework of tetrahedra that enclose polyhedral cells. The
cells form an interconnected void structure, with neighboring
cells connected by skewed non-planar polygons that form
skeletal throats. The topological definition of cells leads to a
unique description and partition of the foam volume. This
uniqueness is a major advantage compared to other tessella-
tion schemes. Next, the cells and the throats are identified,
using a new expanding non-concave bubble algorithm. The
algorithm identifies the faces of tetrahedra that surround
every cell, it identifies the throats, it identifies the tetrahedra
that surround every throat, and it identifies the connectivity of
the cellular structure.

To illustrate the method, we characterized and analyzed
two generic random structures: a mono-disperse foam and a
3D Voronoi tessellation. We have demonstrated that our
analysis can distinguish easily between the two structures,
both on the topological and the geometric properties. The
distributions of all the topological characteristics were broader
in the Voronoi structure. The differences were especially clear
on analyzing the distributions of two geometric character-
istics: the quadron volumes and throat areas. In both cases the
distributions of the two structures were markedly different.

One of the advantages of the characterization method is
that it makes possible to apply the entropic analysis,
formulated originally by Edwards and collaborators for
granular systems,[22] and extended later to cellular struc-
tures,[20,21,29] to disordered foam structures. In particular, the
method quantifies explicitly a volume function, which is at the
heart of the formalism, whose evaluation had been only
approximate. The formulation of the volume function relies on
the identification of basic volume elements – the quadrons –
that can be constructed to tessellate the volume of the foam.

Our algorithm identifies all the quadrons and characterizes
their properties, one of which is their volume. For the
mono-disperse foam we have found that a g function
describes very well the distribution of quadron volumes.
Using this form, we illustrated calculations of structural
properties as expectation values over the partition function. In
particular, we calculated the expectation values of the
moments of the volume distribution per vertex. Other possible
structural characteristics that can be computed by this
approach would be the cross-section of the skeletal throats
and the entire solid–void surface in pseudo-granular systems.

Several methods have been used recently to analyze foam
structures using 3D tomography. These include, extraction of
the pore network and solid network by image analysis such as
the watershed algorithm[17] and statistical methods aiming at
getting scalar descriptors that give simple statistical mea-
sures,[19] e.g., integral-geometry morphological image analy-
sis and Minkowski functionals. While, this paper presents a
system of extracting pore network as well, it is different from
the former type ofmethods due to the fact that the algorithm is
topological in nature. The algorithm searches for a unique
cellular structure that is defined by its topology. Indeed, part
of the identification can be done using the methods presented
in Vicente et al.,[17] however, the resulting network must be
adapted to work with the entropic formalism. The final
construction is not a skeleton (nodes connected by one
dimensional links) but a system of tetrahedra that touch at the
corners that represent the solid and between them a set of
polyhedra (cells) that share faces which are skewed polygons
(the throats). The difference in structure is also responsible to
some differences of morphological properties such as the
throat area and number of faces per cell. For example, the
number of faces per cell as calculated in Kraynik et al.[30]

corresponds to the number of throats in our case and not to the
number of faces that include the triangular faces. Also, the
number of edges per throat for mono-dispersed foam is
similar to the number of edges per face.[30] In addition to the
above results, the structure is used to obtain a partition of the
volume of the foam into basic units that represent the degrees
of freedom of the foam – the quadrons. These are used to
construct a statistical framework that is based on partition
functions.[20,21] This approach is quite new in foam structures
and the statistics of the basic elements (quadrons) have not
been known prior to our work. As for the latter, the
Minkowski functionals give several statistical descriptors of
porous structures that have simple intuitive interpretation.
These are complementary to the two point correlation function
and are easy to obtain and apply easily to any porous
structure. As such they are suitable for fast preliminary
characterization of the structure. Nevertheless the statistics
theMinkowski functional present is limited and the functional
do not present tools to predict other properties of the complex
structure. The entropic formalism presented here enables us to
calculate properties of the foam as expectation values over the
partition function. In addition, the polyhedral structure we
obtain can be used directly to obtain properties of the porous
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theless, our methods are harder to implement and thus less
suitable for a quick survey of very large systems. Thus the two
approaches should be looked upon as complementary to each
other.

To conclude, we have demonstrated the applicability of an
automated set of algorithms for the characterization and
analysis of structures of foams and tetrahedral pseudo-
granular systems. The characterization is compatible with the
Edwards entropic formalism and to demonstrate its use we
considered a simplified uncorrelated system and calculated
the expectation values of moments of the quadron volume
using the canonical ensemble. This is the first stage in the
characterization. Taking into consideration the shape of the
plateau borders and vertices as additional degrees of freedom
is the next stage.
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