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The stress field equations for two-dimensional disordered isostatic granular materials are refor-
mulated, giving new results beyond the commonly accepted force chains. Localized loads give rise
to exactly determinable cones of influence, bounded by stress chains. Disorder couples same-source
chains, attenuates stresses along chains, causes stress leakage from chains into the cone, and gives rise
to branching. Chains from spatially separate sources do not interact. The formulation is convenient
for computation and several numerical solutions are presented.
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Natural, technological and theoretical challenges made
granular materials a focus of much attention[1]. Of par-
ticular interest is their mechanical behaviour, follow-
ing experimental [2–5] and numerical [6] observations of
nonuniform stress transmission. Conventional elasticity
theory can only explain this phenomenon by imposing
anisotropic elastic constants rather than directly from
the stress equations. Alternatively, it has been proposed
that this is the result of isostatic, or statically deter-
minate, regions that grow as granular media approach
marginally rigid states [7–9], e.g. before and after failure
or near the rigidity percolation threshold [10]. This pic-
ture is supported by numerical results [11]. A continuous
theory of stresses of isostatic states is still in its infancy
but equations have been proposed and derived in several
approximations [8, 9, 12–15]. In 2D, the stress balance
equations are given by the two force equations

∂xσxi + ∂yσyi = gi ; i = x, y (1)

and a global torque moment, σxy = σyx. ~g = (gx, gy) is
an external force field, including body forces. In isostatic-
ity theory, the equations are closed by a linear stress-
structure relation

pxxσyy + pyyσxx = 2pxyσxy . (2)

The form (2) had been suggested originally on empirical
basis [12, 14, 15] and later derived from contact mechan-
ics [16]. The latter provided a geometric interpretation
of P , which is symmetric and whose components are pij ,
establishing that: (i) the mean of TrP over all grains
vanishes; (ii) detP < 0 above some scale; (iii) the stress
equations are hyperbolic, as previously hypothesized [12].
The advantage of this approach is that it enables deriva-
tion of force chains direction without imposing a-priori
anisotropic properties or principal stress axes. The corre-
spondence between the continuous stress chains solutions
and force chains observed experimentally has been made
in reference [8]. Stress chain solutions for coarse-grained

[17] constant fabric parameters have been derived in [8, 9]
by decoupling eqs. (1)-(2) into an integro-differential
form. Attempted perturbation analysis about constant
P had limited success [9].
Here we derive a range of new phenomena for disor-
dered systems directly from the field equations. This
is made possible by re-formulation of eqs. (1)-(2) as a
strictly hyperbolic first order system. We derive ana-
lytical results and demonstrate the convenience of the
new formulation for numerical calculations. Specifically,
we find that: chains from different sources pass through
one another unaffected, isostatic stresses exhibit coning,
coupling between same-source chains, intra-cone leakage,
and branching. In particular, this is the first explicit
derivation of force chain leakage and branching directly
from the governing isostaticity equations.
Consider first the general case pxx 6= 0. The analysis for
pxx = 0 is simpler, leading to similar qualitative results.
Substituting σyy from (2) into (1) yields

∂x~u+ ∂y(A~u) = ~g, with A =
(

0 , 1
−qyy, 2qxy

)
, (3)

where qiy = piy/pxx (i = x, y) and ~u = (σxx, σxy). The
eigenvalues of A are

λ1,2 = qxy ±
√
q2xy − qyy. (4)

On the granular level, the trace of P fluctuates around
zero [16] and therefore qyy is predominantly negative.
Since det(P ) < 0 then q2xy − qyy = −det(P )/p2

xx > 0,
and the eigenvalues λi are distinct and real. It follows
that the system (3) is indeed strictly hyperbolic.
Consider first constant fabric tensors and define the char-
acteristic variables

~w =
(
w1

w2

)
=

1
λ2 − λ1

(
λ2σxx − σxy

−λ1σxx + σxy

)
. (5)

Eq. (3) decouples into

∂xwi + λi∂ywi = hi, i = 1, 2 , (6)
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where λi are given by (4) and

~h =
(
h1

h2

)
=

1
λ2 − λ1

(
λ2gx − gy

−λ1gx + gy

)
. (7)

We now parameterize the characteristic paths by s via

dx/ds = 1 , dy/ds = λi , i = 1, 2 . (8)

When P is constant the characteristics are straight lines.
Since qyy < 0 the characteristics have gradients of oppo-
site signs. Using definition (8), eqs. (6) can be written
as ordinary differential equations

dwi/ds = hi , i = 1, 2 . (9)

along the characteristic paths.
Consider the semi-infinite plane x ≥ 0,−∞ ≤ y ≤ ∞.
At any point (x̃, ỹ), the characteristic variables ~w can be
computed by integrating eqs. (9), each along its unique
characteristic path,

wi (x̃, ỹ) = wi (0, ỹ − λix̃)+
∫ x̃

0

hi(s)ds , i = 1, 2 . (10)

Substituting (10) into (5) yields σxx and σxy. σyy is then
determined from eq. (2).

(a) (b)

FIG. 1: The full numerical solution for the stress field in
a semi-infinite plane, whose fabric tensor is given by (11),
under a narrow Gaussian-shaped source of σxy applied to the
boundary x = 0. We show contour plots of σxy (a) and σxx
(b). Contour colors give the stress magnitude. Note that σxx
is non-zero even with no boundary load in this component.

For simplicity, we set gx = gy = 0 and consider in the fol-
lowing only systems loaded through the external bound-
aries by narrowly localized sources. The extension to gen-
eral source terms and finite external fields ~g is straight-
forward. Solution (10) shows that applying a localized
stress at the boundary gives rise to stresses that prop-
agate into the system only along the two characteristic
paths. These are stress chains. The paths straddle a
‘cone of influence’ [9]. For constant fabric tensors, the
characteristic variables, and hence the stresses, do not

attenuate along these paths. This reproduces the stress
chains found in [8, 12]. Also evident from solution (10)
is that: (i) the stresses vanish at points not connected
by a characteristic path to a non-zero boundary source;
(ii) stresses emanating from different boundary locations
pass through one another unchanged.
No experimental or numerical data exist currently for the
tensor P , which characterizes local rotational disorder
[16]. Therefore, we illustrate our results on synthetic
cases. In fig. 1 we show the full numerical solution for a
system whose fabric tensor is

P =
(

1 , 1/2
1/2, −3

)
, (11)

when a narrow Gaussian-shaped stress σxy is applied to
the boundary at x = 0. All the numerical stress solutions
in this paper were obtained by solving eqs. (6) for the
wi with a standard upwind finite difference method [18].
Fig. 1a shows the solution for σxy. Fig. 1b shows that
even without loading σxx along the boundary, σxx is non-
zero along the characteristic paths. This is because the
value of wi must remain constant along the path.
We next apply this approach to more realistic systems
of variable fabric tensors. Repeating the steps leading to
(6), the characteristic variables wi, defined again by eq.
(5), satisfy the equations

∂xwi + λi∂ywi = hi − ∂yλiwi + (B~w)i , (12)

where the matrix B depends on P and its gradients,

B =
1

λ2 − λ1

(
∂xλ1 + λ1∂yλ1 ∂xλ2 + λ2∂yλ2

−∂xλ1 − λ1∂yλ1 −∂xλ2 − λ2∂yλ2

)
.

(13)
Form (12) allows us to make several significant observa-
tions and it is convenient for numerical analysis. Follow-
ing are four key observation, which we support by full
numerical solutions, using for illustration

P =
(

1, 2
2,−1

)
+
(
ε11, ε12
ε12, ε22

)
cos(kx) . (14)

1. The characteristic variables are now governed by
∂xwi + λi∂ywi = dwi/ds. Stresses propagate along char-
acteristic paths still defined by (8), but with λi func-
tions of position. Consequently, the stress paths are no
longer straight and (8) must be integrated to compute
them. This is illustrated in fig. 2a for the full solution for
εij = 0.1, where the characteristic paths waiver slightly
about straight lines. We will continue to call the region
that the paths straddle cone of influence.
2. From (12) we see that stresses may attenuate along the
paths due to the effects of ∂yλi and the diagonal terms
Bii. This phenomenon is observed in the full solution for
σxy for εij = 0.5 and k = 2π, when a narrow Gaussian-
shaped σxx is applied to the boundary (fig. 2b).
3. w1 and w2 are coupled through the off-diagonal terms
in B. The coupling causes ‘leakage’ of stress from the
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FIG. 2: The full numerical solutions for the stresses in a semi-
infinite plane, when P is given by (14) and a narrow Gaussian-
shaped σxy is applied to the boundary. Contour colors give
stress magnitudes. (a) For εij = 0.1 the stress paths deviate
only slightly from straight and the stresses along them hardly
attenuate or leak. (b) For εij = 0.5 the cone of influence is
still well defined, but both attenuation and leakage increase
significantly. Due to the coupling, the stress at any point
within the cone, e.g. A, is determined by the two sections
of the main stress paths that extend between the source and
points B1 and B2, respectively.

main characteristics into the cone of influence via sec-
ondary characteristics. Note that there can be no leakage
to the outside of the cone since characteristics traced back
from points outside the cone can neither connect to the
load nor can they cross the cone boundaries. This con-
clusion is readily extended to the superposition of mul-
tiple boundary sources. The larger the gradients of P
the stronger the coupling between the wi. This is seen
in figs. 2, where both leakage and attenuation increase
from 2a to 2b.
To understand better the leakage phenomenon, let A
within the cone of influence be the crossing point of two
secondary characteristics, originating at points B1 and
B2 along the main characteristics (fig. 2b). Stresses leak
from Bi to A via the secondary characteristics, but along
the way these pick up contributions from other secondary
characteristics that they cross. Thus, the stress at A is
determined by the stresses along the entire main charac-
teristics segments between the source and the points Bi.
4. Large and localized gradients of P concentrate leak-
age, giving rise to ‘branches’ into the cone of influence.
This phenomenon is illustrated in the full numerical so-
lution shown in fig. 3, where a stress path crosses a large
gradient in P , whereupon a new path branches off. The
dependence of this phenomenon on local parameters is
given in the caption.
Indeed, non-straight stress chains, coning, leakage and
branching have been observed in experiments [4, 5, 20].
This supports our results, but only tentatively since most
existing data is for systems that are not ideally isostatic,
which introduces deviations from the above results, as
discussed elsewhere [9].
To conclude, we have studied stress transmission in two-

FIG. 3: Applying a a narrow Gaussian σxx at the boundary
point (0, 0) of a system with a strong gradient in P within a
thin mid-layer between the dashed lines, sandwiched between
two regions of (different) constant P , results in branching
of the stress paths. The strength of a branch depends on
the gradients in P and the characteristic variables along the
branch. In this case, only the lower path leads to a noticeable
branch. The colored contours give the magnitude of σxy

dimensional disordered isostatic granular materials both
analytically and numerically. We have shown that the
field equations for isostatic systems lead to a richer be-
havior than previously suspected. For the first time, leak-
age and branching of force chains can be derived explic-
itly and predicted from the isostaticity equations. Us-
ing a general stress-structure relation derived in the lit-
erature, we have reformulated the field equations as a
particularly convenient system of hyperbolic equations.
This made possible to derive explicitly several results for
disordered systems. (i) Localized loads propagate pre-
dominantly along two meandering paths that make cone-
like regions of influence. (ii) Stresses attenuate along the
main paths. (iii) Stresses leak from the main paths into
the cone of influence. (iv) Concentrated leakage leads to
stress branching into the cone. (v) Stresses originating
from different sources superpose and therefore cones of
influence do not ‘scatter’ from one another. Eqs. (1)-(2)
make it possible to derive the directions of chains, sec-
ondary chains and branches directly without the need to
impose further conditions. These improve on heuristic
isostatic models that impose conditions on the principal
stress axes, and on models of ad-hoc chain splitting to
explain branching [19].

Our reformulation of the field equations (12) is very con-
venient: it enables a general quantitative analysis of the
stresses in disordered granular materials and allows ex-
plicit calculations of all the above phenomena because
the terms governing attenuation and leakage/branching
can be readily identified. This approach applies to any
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FIG. 4: An example of a stress solution, developing in an
annulus of constant fabric tensor under shear. Three local-
ized load sources of σrθ are applied along the inner boundary,
giving rise to three pairs of stress paths, each forming a re-
gion of influence that resembles the cones of the semi-infinite
plane. The colored contours give the magnitude of the dis-
played stresses.

variable fabric parameters regardless how large the disor-
der. The representation as a linear hyperbolic system is
also convenient for numerical computations as standard
solvers can be applied.
It is straightforward to extend our analysis for the semi-
infinite plane to cylindrical geometries, which are relevant
to a number of experiments in the literature [20, 21]. In-
deed, we have derived the characteristic equations, anal-
ogous to (12), in cylindrical coordinates and have carried
out some preliminary analysis. Fig. 4 shows an example
of a solution of the stress that develops in an annulus
under shear. We have also observed leakage and branch-
ing, as in rectangular geometries, and a more detailed
analysis of cylindrical systems will be reported elsewhere
[22].
Our results can be tested directly by applying localized
loads to assemblies of photoelastic grains, computing
from the structure fabric tensors, deriving stress solu-
tions, and comparing to visualized force fields.
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