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Abstract We demonstrate the use of a structural and sta-
tistical characterisation method on two types of planar disc
packs. One is a very dense pack of mean coordination num-
ber 5.20 and the other of mean coordination number 4.0.
Except for constraining the mean coordination number in
the latter one, the different pack types were constructed by
the same deposition process and had the same disc size dis-
tribution, for a fair statistical comparison. We show that the
two types converge to limit statistics and that these limit sta-
tistics are different. We analyse the limit statistics and com-
pare between both types of packs, demonstrating that the
differences are directly related to the difference in the mean
coordination numbers. We then find quantitatively the dif-
ference between the (inverse) compactivities of the two pack
types: ﬁ — X%‘ = 1.5 £ 0.05. This explicit result supports
strongly the validity of Edwards approach and underpins it as
a useful tool to characterise granular systems quantitatively.
In particular, it also paves the way to quantify the elusive

compactivity.
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1 Introduction

A key to modelling granular matter is a useful characterisa-
tion of the grain-scale structure. In particular, this is essential
as a step to derivation of structure-property relations. Such a
characterisation should: (i) describe the grain-scale structure
quantitatively and (ii) enable large-scale structural charac-
terisation. A method providing both has been suggested in
[1-3]. The structure is quantified via a particular tessella-
tion of the granular space and a description of the shape of
every volume element by a structure tensor. These elements,
called quadrons, are quadrilaterals in two dimensions (2D)
and octahedra in three dimensions (3D). In a sense, the qua-
drons are the elementary ‘quasi-particles’ in the system, as
will become clear below. A brief review of the method in 2D
is given below and the 3D version is detailed in [3,4]. For
many-particle systems, it is convenient to use an entropy-
based statistical mechanical formalism [5-8], based on a vol-
ume partition function

Z, = / =T O (n))d oo (), (1)

Here ® ({n}) is a product of §-functions that constrain all pos-
sible configurations to a prescribed ensemble, WV is a volume
function that sums over all the possible volumes that the qua-
drons can realise, {} are all the structural degrees of freedom
(DOF), and X is the compactivity — a measure of the fluctu-
ations in the realisations that is the analogue of the temper-
ature. The DOF are the independent variables that describe
the structures of all members of the ensemble. We consider
a canonical ensemble of volumes, whose members have N
grains and the same mean number of force-carrying contacts
Z=2,2/N.

This formalism makes it possible to determine expecta-
tion values of structural properties, based on all possible
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configurations. This is to be contrasted with phenomenolog-
ical approaches where statistics are determined from mea-
surements of a finite number of samples under the assumption
that they are typical. As in conventional statistical mechan-
ics, one assumes that, all else being equal, a configura-
tion i of grains occurs with a probability proportional to a
Boltzmann-like factor ¢~"i/X where V; is its volume. From
(1) we can determine the expectation value of any structural
property A

1 i
(4)=—- / A(me™x" O ((naor ) 2)

Note that expectation values integrate over small-scale
degrees of freedom to yield large-scale structural properties,
in effect comprising upscaling, or coarse-graining, of struc-
tural features. As in thermal systems, this formalism leads
to the following relations: X = 9(V)/dS, where S is the
entropy — the logarithm of the number of possible config-
urations; (V) = —dIn(Z,)/d(1/X); and (V?) — (V)? =
8% 1In(Z,)/9(1/X)>.

For the approach to be useful, it was essential to identify
the DOF and their number Npor. In the ensemble described
above, Npor = NZ in 2D assemblies ! and for 3D tetrahe-
dral (foam-like) structures Npor = 3N (2 - %), where N
is the number of cells [4].

Much research focused in recent years on loosely con-
nected packs due to their importance to the understanding of
granular materials near the jamming transition [9-22]. Here
we focus on denser systems both because of their theoretical
significance and their relevance to many applications, where
compactification is a key issue. Moreover, since the dense
regime corresponds to low compactivity, we expect that this
regime should play as important a role for granular physics
as low temperature physics does to physics.

In this paper we apply this approach to dense packs of
polydisperse discs in 2D. In Sect. 2 we review briefly the
structural quantification method and the construction of a
volume function. In Sect. 3 we detail the numerical pro-
tocol to construct dense packs of polydisperse discs. We
analyse the pack statistics and apply the statistical mechan-
ical formalism in Sect. 4. We show that the algorithm used
to construct dense packs leads to limit statistics above a
certain pack size and we study the limit distributions of
disc sizes, of quadron volumes and of the DOF. We com-
pute the difference between the inverse compactivities of
two different types of disc packs. In Sect. 5 we sum-
marise our findings, draw conclusions and outline future
work.

1 It should be noted that there are small corrections to this value due to
boundary effects and due to grains with 7 = 2.
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2 Quantifying the grain-structure: a brief review

A convenient quantitative description of granular structures,
proposed in [1-3], is based on tessellation of the pack into
specific volume elements and quantifying each element by a
structure tensor. First, the contacts of every grain, g, are con-
nected by vectors that circulate it clockwise (Fig. 1), mak-
ing polygons around the grains and the cells. Each vector is
indexed by the grain g and cell ¢ that share it, r¢. Dual to
every r8 is a vector R extending from the centroid of g
(the mean position vector of the contact points around g) to
the centroid of cell c¢. These two vectors make the diagonals
of a quadrilateral, named quadron [3], which we index, for
brevity, by ¢: r¢ — r? and R°¢ — RY. A quadron’s vol-
ume, V4, includes parts of grain and cell volumes. There are
Nz quadrons and they tessellate the total pack volume

NZ
W=>vi 3)
g=1

The volume function suggests the quadrons as the natural
‘quasi-particles’ of the description. Conveniently, the num-
ber of quadrons equals Npor [3].

The quadron structure is quantified unambiguously by
C? = r? @ R?. The deviation of Tr{C?} = r? - RY from
zero measures the deviation of the quadron shape from a
perfect kite and the anti-symmetric part of C? measures its
volume, V¢ = L|r{ R} — r{RY).

This description improves over Voronoi-based tessella-
tions: (i) it is based on the actual force-carrying contacts,
providing direct information on the contact network; (ii) all

Fig. 1 Quantifying the local structure in 2D granular packs. The inter-
granular contact points are joined by vectors r to form z,-edge poly-
gons inside grains and z.-edge polygons around cells. From the centroid
of grain g we extend a vector R® to the centroid of a neighbour cell c.
The vectors r¢ and R make the diagonals of a quadrilateral (dashed
line), called quadron. The quadrons tessellate the plane and are the ele-
mentary volumes of the system. They are also the ‘quasi-particles’ for
the purpose of the statistical mechanical formalism
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the volume elements are quadrilaterals, allowing us to quan-
tify their structures unambiguously.

Not only does this description provide an exact expression
for W in (1), but it also makes possible exact identification
of the DOF [3,4]. The latter is based on the following consid-
erations: (i) there are Nz quadrons; (ii) a quadron volume is
determined by r? and RY; (iii) the R-vectors can be expressed
as linear combinations of the r’s; (iv) only half of the r vec-
tors are independent due to the loops that they form. Taken
together, these give that Npor = NZz. From (iii) we also see
that VW can be written in a quadratic form and hence

_L N2 adad Nz/2
Z, = / e X“qq=1"j "i'j Hq:i drfdryq 4)
where we integrate only over members of the ensemble, omit-
ting the ®-function. Since the number of quadrons coincides
in 2D with Npof, one can use the quadron volumes as the
DOF when convenient

Z, :/e—Zqul VX o ((vey) T dve. (5)

where w ({V1}) is an analogue of the density of states. In the
ideal quadron gas approximation, i.e. assuming uncorrelated
quadron volumes|[3,24,25],

Nz
Zi¢ = [/ e VIX wl(VQ)dvq} (6)

where w; is the one-quadron density of states [3]. While
probably not accurate, the ideal quadron gas approximation
simplifies (6), making possible exact analysis.

3 Construction of 2D dense packs of polydisperse discs

High packing fraction disc packs are achievable with Apol-
lonian packing, for example, but these result in unrealistic
structures with particular long-tailed disc size distributions.
In most real system, the size and shape distributions, as well
as maximal and minimal sizes, are given a-priori. To generate
realistic high-density packs, we increase z by minimising the
mean cell order, z.. Our construction is purely geometrical
and does not enforce mechanical equilibrium.

Discs are deposited sequentially and the pack grows ad-
infinitum, alleviating problems due to containing walls [23].
We start with a seed of three discs in contact, forming an
order-3 cell. The discs radii are chosen from an initial uniform
probability density function (PDF) between 1.0 = R;lin <
R < R =2.0.Anew disc, chosen from the same PDF, is
then attached to two of the existing discs. This process con-
tinues along the boundary of the growing pack. Adding a new
disc n, its size is chosen from the uniform PDF and we try
to attach it to two existing boundary discs already in contact
— a and the previously added disc, b. If n does not overlap

another already existing disc, the addition is accepted, gener-
ating an order-3 cell surrounded by a, b and n. If n overlaps
a third disc ¢, we try to adjust n’s size and location so that
it is in contact with a, b and ¢. We limit the change of n’s
size to %min{Ra, Ry, R:} < R, < %anax. If the resulting n
is too small, R}, is reduced to allow more space for n. This
latter step is repeated either until both n and b are acceptable
or until no acceptable size can be achieved. In the latter case
n is discarded and b’s size and location are modified to fill
the gap and contact c. If the increased R, exceeds %Rﬁnax,
then the addition is cancelled and a new boundary pair a-b is
chosen. The above steps eventually result in a modified disc
n*, be it n or b, touching three existing discs. Next, we check
whether n* overlaps with a fourth existing disc, d. If not, the
addition is accepted. Otherwise we try to modify n*’s size
and location so that it contacts d and two of the three discs
that it previously touched. This step fails if n* is outside the
size constraints, in which case n* is discarded and new a and
b are chosen.

Thus, the size constraints may force cells of order z, > 3.
This algorithm is very fast since the addition takes place
at the pack boundary. Clusters of 10° discs can be generated
within 20 s on an HP xw4600 Workstation (Intel Core 2 Quad
2.83 GHz 12MB CPU, HP 8 GB(4 x 2 GB) DDR2-800 ECC
Memory).

4 Results

Using the above protocol, we produced packs from 2000 to
5 x 10° discs (Fig. 2). Averaging over 1,200 packs of N =
10°, we find a mean coordination number 7z = 5.217 £ 0.004
(referred to in the following, for brevity, as z = 5.2) and a
packing fraction ¢ = 0.870 £ 0.006. Unsurprisingly, this
value is higher than of 2D random close packing of mono-
disperse discs, ¢ = 0.82.

Fig. 2 Left A pack of 10* polydispere discs, produced by the algorithm
described in Sect. 3. Right An example of the tessellation of the space
by quadrons. Each quadron is shown in a different colour
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Fig. 3 The probabilities of (a) the cell order z. and (b) the coordination
number z, for z = 5.2 and z = 4 for ten realisations of N = 5 x 10°

Fig. 4 The PDFs of disc radii for N = 10*, 10 and 5 x 10° packs.
Each plotis a superposition of ten realisations, showing that Ny, ~ 10,
Inset the limit disc-size PDF (black) for 4 realisations of N = 5 x 10°
consists of a contribution from discs whose sizes were modified from
the initial choice (blue) and from discs whose sizes were not (black)
(Color figure online)

We expect the statistical mechanical formalism to apply
to the limit statistics and we test emergence of such statistics
against the following criteria: (i) all possible structural prop-
erties saturate to limit PDFs; (ii) the saturation occurs above
an identifiable pack size Ny ;(iii) different pack realisations
saturate to the same limit statistics above Njjy,.

As representative structural properties, we analysed the
PDFs of z, and z. which saturate already for packs of N ~
1, 000. The collapse of PDFs of ten different packs is shown
in Fig. 3 for N = 5 x 10°. The disc size PDF also converges
to a limit form, which is distinctly different from the initial
uniform one. The PDFs of ten different realisations, each for
pack sizes N = 10*,10° and 5 x 10°, are shown in Fig. 4.
The figure shows that, for this quantity, N, &~ 10°.

The limit disc size PDF can be understood as follows. The
pack growth protocol allows controlled spillage outside the
initial range [R! . = 1, Rl . = 2] to maximise the number
of order-3 cells. This results in the seemingly discontinuous
jumps at R’ . and R! . (Fig. 4). Above R’ . atail evolved,

min max
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Fig. 5 The quadron volume PDFs of the dense pack with z = 5.2
(black) and of the sparser pack with z = 4 (green). The disc size distri-
bution is the same for both packs. Plotted for each type of structure are
the PDFs of ten realisations, which collapse nicely to one curve (Color
figure online)
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Fig. 6 The PDFs of r? = |r?| for the two different structures. The
dense packs’ PDF is in black and that of the sparser one, 7 = 4, in
green. Note the shift to higher values with the reduction of z due to the
lower concentration of contact points (Color figure online)

cut off at R = 3R! ,./2, while small size discs appear
below Rl’lnin. Yet, in contrast to the monotonic decrease of the
large- R tail, there develops a local maximum in the small-
R regime. We cannot currently predict the functional form
of the PDF in the three regimes. Nevertheless, the size PDF
can be decomposed into two conditional PDFs: that of discs
whose sizes were picked from the initial PDF and remained
unchanged, and those whose sizes were modified as above
(see inset in Fig. 4). The forms of these explains the origin
of the discontinuous jumps.

The quadron statistics also converge to a limit form. In
particular, their limit volume PDF, which underlies the sta-
tistical mechanical formalism, is shown in Fig. 5, for ten
N =5 x 10° pack realisations.

As discussed above, identification and counting of the
DOF are essential to the usefulness of the formalism. The
DOF are a subset of Nz/2 of the 2D r? vectors, giving
Npor = Nz. The coincidence of this value with the number
of quadrons allows using quadron volumes as the degrees
of freedom. More generally, one needs the density of states
w(V?). The systems are isotropic and therefore the orien-
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tations of the r? are uniformly distributed in [0, 27]. The -05 5y
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PDFs of their magnitudes |r?| is shown in Fig. 6 from ten p— ! %% oo, 7

realisations. a] F 7T %XX& ]

The distribution of the quadron volumes is a product of N ~ -2 WXXXXXXX 1

X

the density of states and the Boltzmann-like factor and, in i i =25 R X%X § b

the ideal quadron gas model [3], o5 3t T 21

& | & a5t <

4| 4

PV = —— e VX wy (V). (7) = s | | | <
Zy (X) ~05 1 15 2 2.5
Vi, >

To extract the density of states we need to examine ensembles
of structures at different compactivities but the same density
of states. Therefore, we have generated packs with 7 = 4 and
packing fraction ¢ = 0.80 &= 0.01, using the same disc size
distribution (Fig. 4) and similar deposition procedure as for
the z = 5.2 packs. These packs are found to have only about
half as many order-3 cells as the dense packs and many more
cells of orders 4 and 5.

The probabilities of z, and z. for ten N = 5 x 107 re-
alisations in Fig. 3, shown alongside the dense packs for
comparison, confirm emergence of limit statistics.

Similarly, we included the quadron volume PDF of the
Z = 4 packs in Fig. 5 for comparison. We observe that lower
Z both shifts the PDF to higher volumes and broadens it. The
former effect is not surprising since lower z leads to lower
density and therefore to larger quadron volumes. The broad-
ening is not as straightforward to understand, but we believe
that it is caused by the broader PDF of z.. Since our aim here
is mainly to establish the utility of the method, we leave this
study to a later report. We observe the same effects in the
PDF of r4, which we include in Fig. 6 for comparison with
the dense packs.

Finally, from Eq. (7) we see that, from the ratio of two
PDFs of structures with the same density of states, we can
derive the difference between their inverse compactivities
(261,

i [Ps.z(Vq)]
o 4552870

o D ve 4 const 8)
P4(V‘1) = onst.

Xs52 X4

An identical density of states is the consequence of the iden-
tical size distribution and similar pack growth procedure. We
plot this ratio as a function of V¢ in Fig. 7. The clear linear
behaviour supports not only the assumption on the identi-
cal density of states but also the entire statistical mechanical
approach. We find ﬁ — X% = 1.50 £ 0.05. The deviation
from linearity at the very low volumes is due to the combi-
nation of finite packs and the overwhelming fraction of cells
of order z. = 3 in the dense packs. The deviation at the high
volumes is due to the scarcity of high cell orders in the dense
packs, leading to poor statistics in this range. Interestingly,
the graph extrapolates to (0, 0), the significance of which
remains to be explored.

Fig. 7 The ratio of the quadron volume PDFs for statistics of the 7 =
5.2 and z = 4. For identical density of states, this ratio, Eq. (8), gives
the difference between the inverse compactivities. The ratio is mainly
exponential, giving ﬁ — X% =1.54+0.05

5 Conclusions

To conclude, we have used the Edwards statistical mechanics
to report the following. (a)The development of a procedure
to generate numerically dense 2D granular packs of poly-
disperse discs of bounded sizes. The procedure is very fast,
making possible to generate packs of millions of discs on a
desk workstation in under a minute. (b) The development of
a similar procedure to generate packs of pre-determined disc
size distributions, with mean coordination number 7 = 4. (c)
Demonstration that the dense and sparser packs converge to
limit statistics for packs sizes of N < 10°. (d) Computations
and study of the probability functions of several structural
quantities. Comparing two types of packs with the same disc
size distribution and construction procedure, we have shown
that the limit statistics are sensitive to z. The quadron vol-
ume PDF peaks at lower values, which is expected, but it
also narrows, which is less straightforward to understand.
Z had a similar effect on the distribution of the magnitudes
of the vectors r?. (e) Analysis of the compactivities of the
different pack types, showing that they have the same den-
sity of states and finding the difference between their inverse
compactivities, ¢ — 5> = 1.50 £ 0.05.

These results provide a further step towards making the
Edwards statistical mechanical formalism more applicable
and useful. We expect that, once the compactivity is quanti-
fied for these systems, it will be possible to derive the density
of states, using Eq. (7). This will then make it possible to
obtain any structural property as an expectation value of the
volume partition function Eq. (2).

Although different pack generation protocols should lead
to different limit statistics and different limit disc size dis-
tribution, the methodology introduced here should work for
any protocol. Our procedure of generating the two types of
packs appears to leave the density of states unchanged and
provides evidence for the exponential behaviour of the ratio
of the PDFs of the quadron volumes.
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We could only generate either very dense packs of z = 5.2

or less dense ones of 7 = 4. It would be interesting to generate
packs with different values of Z to complement this analysis
and perhaps find the exact dependence of Xz on z. We are
currently studying this problem.
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